Abstract
The control of a small-scale power network incorporating four generators is investigated in this paper. The small-signal dynamic characteristics and control system performance are assessed using individual channel analysis and design (ICAD). ICAD is motivated through the need to understand the effect of system interaction on both the control design task and robustness. System interaction on individual transmissions is explicitly considered through the use of multivariable structure functions which, although scalar, encapsulate the multivariable nature of the system. The strength of such an approach is that highly successful single-input single-output classical control techniques such as Nyquist/Bode can be used without loss of multivariable information. For the example network, ICAD enables the design of the individual controllers to be performed independently of one another and determines that the effect of system interaction is not detrimental to network stability. It therefore potentially provides a strong platform for consideration of large-scale networks with embedded generation. Finally, the ICAD network control analysis and
Original language | English |
---|---|
Title of host publication | 2000 IEEE power engineering society winter meeting, conference proceedings, volumes 1-4 |
Place of Publication | Piscataway, NJ |
Publisher | IEEE |
Pages | 1399-1404 |
Number of pages | 6 |
Volume | 2 |
ISBN (Print) | 0780359364 |
DOIs | |
Publication status | Published - 2000 |
Event | 2000 Winter Meeting of the IEEE Power Engineering-Society - Singapore, Singapore Duration: 23 Jan 2000 → 27 Jan 2000 |
Conference
Conference | 2000 Winter Meeting of the IEEE Power Engineering-Society |
---|---|
Country/Territory | Singapore |
City | Singapore |
Period | 23/01/00 → 27/01/00 |
Keywords
- power system control
- power system dynamic stability
- distributed control
- embedded generation