TY - JOUR
T1 - Progressing the frustrated Lewis pair abilities of N‐heterocyclic carbene/GaR3 combinations for catalytic hydroboration of aldehydes and ketones
AU - Bole, Leonie J.
AU - Uzelac, Marina
AU - Hernán-Gómez, Alberto
AU - Kennedy, Alan R.
AU - O'Hara, Charles T.
AU - Hevia , Eva
PY - 2021/9/20
Y1 - 2021/9/20
N2 - Exploiting the steric incompatibility of the tris-(alkyl)gallium GaR3 (R = CH2SiMe3) and the bulky N-heterocyclic carbene (NHC) 1,3-bis(tert-butyl)imidazol-2-ylidene (ItBu), here we report the B−H bond activation of pinacolborane (HBPin), which has led to the isolation and structural authentication of a novel ion pair, [{ItBu-BPin}+{GaR3(μ-H)-GaR3}−] (2). Contrastingly, neither ItBu or GaR3 was able to react with HBPin under the conditions of this study. Combining an NHC-stabilized borenium cation, [{ItBu-BPin}+], with an anionic dinuclear gallate, [{GaR3(μ-H)GaR3}−], 2 proved to be unstable in solution at room temperature, evolving to the abnormal NHC-Ga complex [BPinC{{N(tBu)]2CHCGa(R)3}] (3). Interestingly, the structural isomer of 2, with the borenium cation residing at the C4 position of the carbene, [{aItBu-BPin}+{GaR3(μ-H)GaR3}−] (4), was obtained when the abnormal NHC complex [aItBu·GaR3] (1) was heated to 70 °C with HBPin, demonstrating that, under these forced conditions, it is possible to induce thermal frustration of the Lewis base/Lewis acid components of 1, enabling the activation of HBPin. Building on these stoichiometric studies, the frustrated Lewis pair (FLP) reactivity observed for the GaR3/ItBu combination with HBPin could then be upgraded to catalytic regimes, allowing the efficient hydroboration of a range of aldehydes and ketones under mild reaction conditions. Mechanistic insights into the possible reaction pathway involved in this process have been gained by combining kinetic investigations with a comparative study of the catalytic capabilities of several gallium and borenium species related to 2. Disclosing a new cooperative partnership, reactions are proposed to occur via the formation of a highly reactive monomeric hydride gallate, [{ItBu- BPin}+{GaR3(H)}−] (I). Each anionic and cationic component of I plays a key role for success of the hydroboration, with the nucleophilic monomeric gallate anion favoring the transfer of its hydride to the C=O bond of the organic substate, which in turn is activated by coordination to the borenium cation.
AB - Exploiting the steric incompatibility of the tris-(alkyl)gallium GaR3 (R = CH2SiMe3) and the bulky N-heterocyclic carbene (NHC) 1,3-bis(tert-butyl)imidazol-2-ylidene (ItBu), here we report the B−H bond activation of pinacolborane (HBPin), which has led to the isolation and structural authentication of a novel ion pair, [{ItBu-BPin}+{GaR3(μ-H)-GaR3}−] (2). Contrastingly, neither ItBu or GaR3 was able to react with HBPin under the conditions of this study. Combining an NHC-stabilized borenium cation, [{ItBu-BPin}+], with an anionic dinuclear gallate, [{GaR3(μ-H)GaR3}−], 2 proved to be unstable in solution at room temperature, evolving to the abnormal NHC-Ga complex [BPinC{{N(tBu)]2CHCGa(R)3}] (3). Interestingly, the structural isomer of 2, with the borenium cation residing at the C4 position of the carbene, [{aItBu-BPin}+{GaR3(μ-H)GaR3}−] (4), was obtained when the abnormal NHC complex [aItBu·GaR3] (1) was heated to 70 °C with HBPin, demonstrating that, under these forced conditions, it is possible to induce thermal frustration of the Lewis base/Lewis acid components of 1, enabling the activation of HBPin. Building on these stoichiometric studies, the frustrated Lewis pair (FLP) reactivity observed for the GaR3/ItBu combination with HBPin could then be upgraded to catalytic regimes, allowing the efficient hydroboration of a range of aldehydes and ketones under mild reaction conditions. Mechanistic insights into the possible reaction pathway involved in this process have been gained by combining kinetic investigations with a comparative study of the catalytic capabilities of several gallium and borenium species related to 2. Disclosing a new cooperative partnership, reactions are proposed to occur via the formation of a highly reactive monomeric hydride gallate, [{ItBu- BPin}+{GaR3(H)}−] (I). Each anionic and cationic component of I plays a key role for success of the hydroboration, with the nucleophilic monomeric gallate anion favoring the transfer of its hydride to the C=O bond of the organic substate, which in turn is activated by coordination to the borenium cation.
KW - frustrated Lewis pairs
KW - anions
KW - ketones
KW - reactivity
KW - cations
U2 - 10.1021/acs.inorgchem.1c01276
DO - 10.1021/acs.inorgchem.1c01276
M3 - Article
SN - 0020-1669
VL - 60
SP - 13784
EP - 13796
JO - Inorganic Chemistry
JF - Inorganic Chemistry
IS - 18
ER -