TY - JOUR
T1 - Probabilistic risk assessment of station blackouts in nuclear power plants
AU - George-Williams, Hindolo
AU - Lee, Min
AU - Patelli, Edoardo
N1 - © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
PY - 2018/6/1
Y1 - 2018/6/1
N2 - Adequate ac power is required for decay heat removal in nuclear power plants. Station blackout (SBO) accidents, therefore, are a very critical phenomenon to their safety. Though designed to cope with these incidents, nuclear power plants can only do so for a limited time, without risking core damage and possible catastrophe. Their impact on a plant's safety are determined by their frequency and duration, which quantities, currently, are computed via a static fault tree analysis that deteriorates in applicability with increasing system size and complexity. This paper proposes a novel alternative framework based on a hybrid of Monte Carlo methods, multistate modeling, and network theory. The intuitive framework, which is applicable to a variety of SBOs problems, can provide a complete insight into their risks. Most importantly, its underlying modeling principles are generic, and, therefore, applicable to non-nuclear system reliability problems, as well. When applied to the Maanshan nuclear power plant in Taiwan, the results validate the framework as a rational decision-support tool in the mitigation and prevention of SBOs.
AB - Adequate ac power is required for decay heat removal in nuclear power plants. Station blackout (SBO) accidents, therefore, are a very critical phenomenon to their safety. Though designed to cope with these incidents, nuclear power plants can only do so for a limited time, without risking core damage and possible catastrophe. Their impact on a plant's safety are determined by their frequency and duration, which quantities, currently, are computed via a static fault tree analysis that deteriorates in applicability with increasing system size and complexity. This paper proposes a novel alternative framework based on a hybrid of Monte Carlo methods, multistate modeling, and network theory. The intuitive framework, which is applicable to a variety of SBOs problems, can provide a complete insight into their risks. Most importantly, its underlying modeling principles are generic, and, therefore, applicable to non-nuclear system reliability problems, as well. When applied to the Maanshan nuclear power plant in Taiwan, the results validate the framework as a rational decision-support tool in the mitigation and prevention of SBOs.
KW - accident recovery
KW - monte carlo simulation (MCS)
KW - nuclear power plant
KW - risk assessment
KW - blackout (SBO)
U2 - 10.1109/TR.2018.2824620
DO - 10.1109/TR.2018.2824620
M3 - Article
SN - 0018-9529
VL - 67
SP - 494
EP - 512
JO - IEEE Transactions on Reliability
JF - IEEE Transactions on Reliability
IS - 2
ER -