Primal mixed formulations for the coupling of FEM and BEM. Part I: linear problems

Gabriel R. Barrenechea, Gabriel N. Gatica, Jean-Marie Thomas

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)


We apply the boundary integral equation method and a primal mixed finite element approach to study the weak solvability and Galerkin approximations of linear interior transmission problems arising in potential theory and elastostatics. The existence and uniqueness of solution of the resulting weak formulations and of the associated discrete schemes are derived by using the classical theory for variational problems with constraints. Suitable finite element subspaces of Lagrange type satisfying the compatibility conditions are utilized for defining the Galerkin scheme. The error analysis and corresponding rates of convergence are also provided.
Original languageEnglish
Pages (from-to)7-32
Number of pages26
JournalNumerical Functional Analysis and Optimization
Issue number1-2
Publication statusPublished - 1998


  • primal mixed finite elements
  • boundary element methods
  • inf-sup conditions
  • transmission problems


Dive into the research topics of 'Primal mixed formulations for the coupling of FEM and BEM. Part I: linear problems'. Together they form a unique fingerprint.

Cite this