TY - JOUR
T1 - Preferential liver gene expression with polypropylenimine dendrimers
AU - Schätzlein, Andreas G.
AU - Zinselmeyer, Bernd H.
AU - Elouzi, Adurrahim
AU - Dufès, Christine
AU - Chim, Ya Tsz A.
AU - Roberts, Clive J.
AU - Davies, Martyn C.
AU - Munro, Avril
AU - Gray, Alexander I.
AU - Uchegbu, Ijeoma F.
N1 - Proceedings of the Eight European Symposium on Controlled Drug Delivery
PY - 2005
Y1 - 2005
N2 - Previously, the lower generation (DAB 8-generation 2 and DAB 16-generation 3) polypropylenimine dendrimers have been shown to be effective gene delivery systems in vitro. In the current work, we sought to: (a) test the effect of the strength of the carrier, DNA electrostatic interaction on gene transfer and (b) to study the in vivo gene transfer activity of these low molecular weight (<1687 Da) non-amphiphilic plain and quaternary ammonium gene carriers. Towards this aim, methyl quaternary ammonium derivatives of DAB 4 (generation 1), DAB 8, DAB 16 and DAB 32 (generation 4) were synthesised to give Q4, Q8, Q16 and Q32, respectively. Quaternisation of DAB 8 proved to be critical in improving DNA binding, as evidenced by data from the ethidium bromide exclusion assay and dendrimer-DNA colloidal stability data. This improved colloidal stability had a major effect on vector tolerability, as Q8-DNA formulations were well tolerated on intravenous injection while a similar DAB 8-DNA dose was lethally toxic by the same route. Quaternisation also improved the in vitro cell biocompatibility of DAB 16-DNA and DAB 32-DNA dendrimer complexes by about 4-fold but not that of the lower generation DAB 4-DNA and DAB 8-DNA formulations. In contrast to previous reports with non-viral gene delivery systems, the intravenous administration of DAB 16-DNA and Q8-DNA formulations resulted in liver targeted gene expression as opposed to the lung targeted gene expression obtained with the control polymer-Exgen 500 [linear poly(ethylenimine)] and a lung avoidance hypothesis is postulated. We conclude that the polypropylenimine dendrimers are promising gene delivery systems which may be used to target the liver and avoid the lung and also that molecular modifications conferring colloidal stability on gene delivery formulations have a profound effect on their tolerability on intravenous administration.
AB - Previously, the lower generation (DAB 8-generation 2 and DAB 16-generation 3) polypropylenimine dendrimers have been shown to be effective gene delivery systems in vitro. In the current work, we sought to: (a) test the effect of the strength of the carrier, DNA electrostatic interaction on gene transfer and (b) to study the in vivo gene transfer activity of these low molecular weight (<1687 Da) non-amphiphilic plain and quaternary ammonium gene carriers. Towards this aim, methyl quaternary ammonium derivatives of DAB 4 (generation 1), DAB 8, DAB 16 and DAB 32 (generation 4) were synthesised to give Q4, Q8, Q16 and Q32, respectively. Quaternisation of DAB 8 proved to be critical in improving DNA binding, as evidenced by data from the ethidium bromide exclusion assay and dendrimer-DNA colloidal stability data. This improved colloidal stability had a major effect on vector tolerability, as Q8-DNA formulations were well tolerated on intravenous injection while a similar DAB 8-DNA dose was lethally toxic by the same route. Quaternisation also improved the in vitro cell biocompatibility of DAB 16-DNA and DAB 32-DNA dendrimer complexes by about 4-fold but not that of the lower generation DAB 4-DNA and DAB 8-DNA formulations. In contrast to previous reports with non-viral gene delivery systems, the intravenous administration of DAB 16-DNA and Q8-DNA formulations resulted in liver targeted gene expression as opposed to the lung targeted gene expression obtained with the control polymer-Exgen 500 [linear poly(ethylenimine)] and a lung avoidance hypothesis is postulated. We conclude that the polypropylenimine dendrimers are promising gene delivery systems which may be used to target the liver and avoid the lung and also that molecular modifications conferring colloidal stability on gene delivery formulations have a profound effect on their tolerability on intravenous administration.
KW - polypropylenimine dendrimers
KW - dendrimers
KW - gene delivery
KW - quaternary ammonium dendrimers
KW - liver targeting
KW - liver
KW - particles
KW - pharmacology
U2 - 10.1016/j.jconrel.2004.08.024
DO - 10.1016/j.jconrel.2004.08.024
M3 - Article
SN - 0168-3659
VL - 101
SP - 247
EP - 258
JO - Journal of Controlled Release
JF - Journal of Controlled Release
IS - 1-3
ER -