Predictive mechanisms of head-eye coordination and vestibulo-ocular reflex suppression in humans

G R Barnes, M A Grealy

Research output: Contribution to journalArticle

27 Citations (Scopus)

Abstract

Head and eye movements of human subjects have been recorded during head-free pursuit in the horizontal plane of a target executing sinusoidal motion at a frequency of 0.26 to 0.78 Hz and a peak velocity of +/- 96 degrees/s. The target was not presented continuously but was exposed for brief durations of 120 to 320 ms as it passed through the centre of the visual field at peak velocity. This technique allowed the timing of each response to be assessed in relation to the onset of target appearance. During the first 3 to 4 target presentations, there was a progressive buildup of both head velocity and the smooth component of gaze velocity, while, simultaneously, the responses became more phase-advanced with respect to target onset. In the steady state, similar temporal response trajectories were observed for head and gaze velocity, which were initiated approximately 500 ms prior to target onset, rose to a peak that increased with the duration of target exposure, and then decayed with a time constant of 0.5 to 1 s. Whenever the target failed to appear as expected, the gaze and head velocity trajectories continued to be made, indicating that predictive suppression of the vestibulo-ocular reflex (VOR) was taking place in darkness. In a further experiment, subjects attempted to suppress the VOR during whole body oscillation at 0.2 or 0.4 Hz on a turntable by fixating a head-fixed target that appeared for 10 to 160 ms at the time of peak head velocity. Again, VOR suppression was initiated prior to target appearance in the same manner as for natural head movements, and when the target suddenly disappeared but rotation continued, predictive VOR suppression was observed in darkness. The similarity of these predictive effects to those obtained previously for head-fixed pursuit provides further support for the hypothesis that both pursuit and visual suppression of the VOR are controlled primarily by identical visual feedback mechanisms.
LanguageEnglish
Pages193-212
Number of pages20
JournalJournal of Vestibular Research
Volume2
Issue number3
Publication statusPublished - 1992

Fingerprint

Vestibulo-Ocular Reflex
Head
Head Movements
Darkness
Sensory Feedback
Eye Movements
Visual Fields

Keywords

  • dark adaptation
  • eye movements
  • fixation
  • head
  • humans
  • movement
  • reflex
  • vestibulo-ocular
  • rotation

Cite this

@article{b1cd6aaefe6d47ddb75191812ee2f11a,
title = "Predictive mechanisms of head-eye coordination and vestibulo-ocular reflex suppression in humans",
abstract = "Head and eye movements of human subjects have been recorded during head-free pursuit in the horizontal plane of a target executing sinusoidal motion at a frequency of 0.26 to 0.78 Hz and a peak velocity of +/- 96 degrees/s. The target was not presented continuously but was exposed for brief durations of 120 to 320 ms as it passed through the centre of the visual field at peak velocity. This technique allowed the timing of each response to be assessed in relation to the onset of target appearance. During the first 3 to 4 target presentations, there was a progressive buildup of both head velocity and the smooth component of gaze velocity, while, simultaneously, the responses became more phase-advanced with respect to target onset. In the steady state, similar temporal response trajectories were observed for head and gaze velocity, which were initiated approximately 500 ms prior to target onset, rose to a peak that increased with the duration of target exposure, and then decayed with a time constant of 0.5 to 1 s. Whenever the target failed to appear as expected, the gaze and head velocity trajectories continued to be made, indicating that predictive suppression of the vestibulo-ocular reflex (VOR) was taking place in darkness. In a further experiment, subjects attempted to suppress the VOR during whole body oscillation at 0.2 or 0.4 Hz on a turntable by fixating a head-fixed target that appeared for 10 to 160 ms at the time of peak head velocity. Again, VOR suppression was initiated prior to target appearance in the same manner as for natural head movements, and when the target suddenly disappeared but rotation continued, predictive VOR suppression was observed in darkness. The similarity of these predictive effects to those obtained previously for head-fixed pursuit provides further support for the hypothesis that both pursuit and visual suppression of the VOR are controlled primarily by identical visual feedback mechanisms.",
keywords = "dark adaptation, eye movements, fixation, head, humans, movement, reflex, vestibulo-ocular, rotation",
author = "Barnes, {G R} and Grealy, {M A}",
year = "1992",
language = "English",
volume = "2",
pages = "193--212",
journal = "Journal of Vestibular Research",
issn = "0957-4271",
number = "3",

}

Predictive mechanisms of head-eye coordination and vestibulo-ocular reflex suppression in humans. / Barnes, G R; Grealy, M A.

In: Journal of Vestibular Research , Vol. 2, No. 3, 1992, p. 193-212.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Predictive mechanisms of head-eye coordination and vestibulo-ocular reflex suppression in humans

AU - Barnes, G R

AU - Grealy, M A

PY - 1992

Y1 - 1992

N2 - Head and eye movements of human subjects have been recorded during head-free pursuit in the horizontal plane of a target executing sinusoidal motion at a frequency of 0.26 to 0.78 Hz and a peak velocity of +/- 96 degrees/s. The target was not presented continuously but was exposed for brief durations of 120 to 320 ms as it passed through the centre of the visual field at peak velocity. This technique allowed the timing of each response to be assessed in relation to the onset of target appearance. During the first 3 to 4 target presentations, there was a progressive buildup of both head velocity and the smooth component of gaze velocity, while, simultaneously, the responses became more phase-advanced with respect to target onset. In the steady state, similar temporal response trajectories were observed for head and gaze velocity, which were initiated approximately 500 ms prior to target onset, rose to a peak that increased with the duration of target exposure, and then decayed with a time constant of 0.5 to 1 s. Whenever the target failed to appear as expected, the gaze and head velocity trajectories continued to be made, indicating that predictive suppression of the vestibulo-ocular reflex (VOR) was taking place in darkness. In a further experiment, subjects attempted to suppress the VOR during whole body oscillation at 0.2 or 0.4 Hz on a turntable by fixating a head-fixed target that appeared for 10 to 160 ms at the time of peak head velocity. Again, VOR suppression was initiated prior to target appearance in the same manner as for natural head movements, and when the target suddenly disappeared but rotation continued, predictive VOR suppression was observed in darkness. The similarity of these predictive effects to those obtained previously for head-fixed pursuit provides further support for the hypothesis that both pursuit and visual suppression of the VOR are controlled primarily by identical visual feedback mechanisms.

AB - Head and eye movements of human subjects have been recorded during head-free pursuit in the horizontal plane of a target executing sinusoidal motion at a frequency of 0.26 to 0.78 Hz and a peak velocity of +/- 96 degrees/s. The target was not presented continuously but was exposed for brief durations of 120 to 320 ms as it passed through the centre of the visual field at peak velocity. This technique allowed the timing of each response to be assessed in relation to the onset of target appearance. During the first 3 to 4 target presentations, there was a progressive buildup of both head velocity and the smooth component of gaze velocity, while, simultaneously, the responses became more phase-advanced with respect to target onset. In the steady state, similar temporal response trajectories were observed for head and gaze velocity, which were initiated approximately 500 ms prior to target onset, rose to a peak that increased with the duration of target exposure, and then decayed with a time constant of 0.5 to 1 s. Whenever the target failed to appear as expected, the gaze and head velocity trajectories continued to be made, indicating that predictive suppression of the vestibulo-ocular reflex (VOR) was taking place in darkness. In a further experiment, subjects attempted to suppress the VOR during whole body oscillation at 0.2 or 0.4 Hz on a turntable by fixating a head-fixed target that appeared for 10 to 160 ms at the time of peak head velocity. Again, VOR suppression was initiated prior to target appearance in the same manner as for natural head movements, and when the target suddenly disappeared but rotation continued, predictive VOR suppression was observed in darkness. The similarity of these predictive effects to those obtained previously for head-fixed pursuit provides further support for the hypothesis that both pursuit and visual suppression of the VOR are controlled primarily by identical visual feedback mechanisms.

KW - dark adaptation

KW - eye movements

KW - fixation

KW - head

KW - humans

KW - movement

KW - reflex

KW - vestibulo-ocular

KW - rotation

UR - http://www.jvr-web.org/Index.html

M3 - Article

VL - 2

SP - 193

EP - 212

JO - Journal of Vestibular Research

T2 - Journal of Vestibular Research

JF - Journal of Vestibular Research

SN - 0957-4271

IS - 3

ER -