Prediction of welding responses using AI approach: adaptive neuro-fuzzy inference system and genetic programming

Suman Chatterjee*, Siba Sankar Mahapatra, Luciano Lamberti, Catalin I. Pruncu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)
100 Downloads (Pure)

Abstract

Laser welding of thin sheets has widespread application in various fields such as battery manufacturing, automobiles, aviation, electronics circuits and medical sciences. Hence, it is very essential to develop a predictive model using artificial intelligence in order to achieve high-quality weldments in an economical manner. In the present study, two advanced artificial intelligence techniques, namely adaptive neuro-fuzzy inference system (ANFIS) and multi-gene genetic programming (MGGP), were implemented to predict the welding responses such as heat-affected zone, surface roughness and welding strength during joining of thin sheets using Nd:YAG laser. The study attempts to develop an appropriate predictive model for the welding process. In the proposed methodology, 70% of the experimental data constitutes the training set whereas remaining 30% data is used as testing set. The results of this study indicated that the root-mean-square error (RMSE) of tested data set ranges between 7 and 16% for MGGP model, while RMSE for testing data set lies 18–35% for ANFIS model. The study indicates that the MGGP predicts the welding responses in a superior manner in laser welding process and can be applied for accurate prediction of performance measures.

Original languageEnglish
Article number53
Number of pages15
JournalJournal of the Brazilian Society of Mechanical Sciences and Engineering
Volume44
Issue number2
DOIs
Publication statusPublished - 13 Jan 2022

Keywords

  • ANFIS
  • laser welding
  • MGGP
  • Nd
  • stainless steel
  • titanium alloy
  • YAG laser

Fingerprint

Dive into the research topics of 'Prediction of welding responses using AI approach: adaptive neuro-fuzzy inference system and genetic programming'. Together they form a unique fingerprint.

Cite this