TY - JOUR
T1 - Polyphenol-rich leaf of annona squamosa stimulates insulin release from BRIN-BD11 cells and isolated mouse islets, reduces (CH2O)n digestion and absorption, and improves glucose tolerance and GLP-1 (7-36) levels in high-fat- fed rats
AU - Ansari, Prawej
AU - Hannan, J.M.A.
AU - Seidel, Veronique
AU - Abdel-Wahab, Yaser H.A.
N1 - This article belongs to the Special Issue Frontiers of Natural Antidiabetic Drug Discovery
PY - 2022/10/20
Y1 - 2022/10/20
N2 - Annona squamosa, commonly known as custard apple, is traditionally used for the treat-ment of various diseases including diabetes, cardiovascular disease (CVD), and gastritis. This study was undertaken to investigate the effects of an ethanolic (80% v/v) extract of A. squamosa (EEAS) leaves in vitro on insulin secretion from clonal pancreatic BRIN BD11 β-cells and mouse islets, in-cluding mechanistic studies on the effect of EEAS on membrane potential and intracellular calcium ion concentration. Additional in vitro glucose-lowering actions were assessed. For in vivo studies, high-fat-fed (HFF) obese/normal rats were selected. EEAS increased insulin secretion in vitro in a dose-dependent manner. This effect was linked to β-cell membrane depolarisation and cytoplasmic Ca2+ influx. In the presence of isobutyl methylxanthine (IBMX), tolbutamide, or KCl, the insulin-releasing effect of EEAS was increased, suggesting its effect was also mediated via a KATP-independ-ent pathways. EEAS inhibited insulin glycation, glucose absorption, and DPP-IV enzyme activity in vitro and enhanced glucose uptake and insulin action in 3T3L1 cells. In vivo, gut motility, food intake, glucose tolerance, plasma insulin, and active GLP-1 (7-36) levels were improved, whereas plasma DPP-IV levels were reduced in HFF rats. EEAS attenuated the absorption of sucrose and glucose as well as decreased serum glucose levels after sucrose loading and in situ intestinal perfu-sion in non-diabetic rats. Rutin, proanthocyanidin, and squafosacin G were putatively identified as the anti-hyperglycaemic phytomolecules in EEAS using HPLC followed by LC-MS analysis. This study illustrates the potential of A. squamosa and its phytoconstituents as a source of potential anti-diabetic agents.
AB - Annona squamosa, commonly known as custard apple, is traditionally used for the treat-ment of various diseases including diabetes, cardiovascular disease (CVD), and gastritis. This study was undertaken to investigate the effects of an ethanolic (80% v/v) extract of A. squamosa (EEAS) leaves in vitro on insulin secretion from clonal pancreatic BRIN BD11 β-cells and mouse islets, in-cluding mechanistic studies on the effect of EEAS on membrane potential and intracellular calcium ion concentration. Additional in vitro glucose-lowering actions were assessed. For in vivo studies, high-fat-fed (HFF) obese/normal rats were selected. EEAS increased insulin secretion in vitro in a dose-dependent manner. This effect was linked to β-cell membrane depolarisation and cytoplasmic Ca2+ influx. In the presence of isobutyl methylxanthine (IBMX), tolbutamide, or KCl, the insulin-releasing effect of EEAS was increased, suggesting its effect was also mediated via a KATP-independ-ent pathways. EEAS inhibited insulin glycation, glucose absorption, and DPP-IV enzyme activity in vitro and enhanced glucose uptake and insulin action in 3T3L1 cells. In vivo, gut motility, food intake, glucose tolerance, plasma insulin, and active GLP-1 (7-36) levels were improved, whereas plasma DPP-IV levels were reduced in HFF rats. EEAS attenuated the absorption of sucrose and glucose as well as decreased serum glucose levels after sucrose loading and in situ intestinal perfu-sion in non-diabetic rats. Rutin, proanthocyanidin, and squafosacin G were putatively identified as the anti-hyperglycaemic phytomolecules in EEAS using HPLC followed by LC-MS analysis. This study illustrates the potential of A. squamosa and its phytoconstituents as a source of potential anti-diabetic agents.
KW - diabetes
KW - insulin
KW - glucose
KW - phytoconstituents
KW - Annona squamosa
KW - GLP-1
UR - https://www.mdpi.com/journal/metabolites/special_issues/3826HT11L7
U2 - 10.3390/metabo12100995
DO - 10.3390/metabo12100995
M3 - Article
SN - 2218-1989
VL - 12
JO - Metabolites
JF - Metabolites
IS - 10
M1 - 995
ER -