Plasma optical shutter in ultraintense laser-foil interaction

W. Q. Wei, X. H. Yuan, Y. Fang, Z. Y. Ge, X. L. Ge, S. Yang, Y. F. Li, G. Q. Liao, Z. Zhang, F. Liu, M. Chen, L. Zhao, H. B. Zhuo, Y. T. Li, Z. M. Sheng, J. Zhang

Research output: Contribution to journalArticle

4 Citations (Scopus)
13 Downloads (Pure)

Abstract

We report on a plasma optical shutter to reduce the intensity level of a nanosecond-duration pedestal of amplified spontaneous emission (ASE) using an ultrathin foil. The foil is ionized by the ASE prepulse and forms an expanding underdense preplasma, which enables the main laser pulse transmission, leading to an enhancement in temporal contrast. When such a plasma shutter is placed in front of a main target of interest, the preplasma profiles observed are similar to that produced from a single-layer reference target irradiated by a high-contrast laser, and can be finely tuned by varying the shutter thickness. Proton beams with significantly reduced divergence and higher flux density were measured experimentally using the double-foil design. The reduction in beam divergence is a characteristic signature of higher contrast laser production as a combined consequence of less target deformation and flatter sheath-acceleration field, as supported by the two-dimensional (2D) hydrodynamic and particle-in-cell simulations. The plasma shutter holds the promise to enhance the laser contrast and manipulate the preplasma conditions for application in high-field-physics experiments.

Original languageEnglish
Article number113111
Number of pages6
JournalPhysics of Plasmas
Volume24
Issue number11
Early online date30 Nov 2017
DOIs
Publication statusE-pub ahead of print - 30 Nov 2017

    Fingerprint

Keywords

  • plasma optical shutter
  • amplified spontaneous emission
  • ultrathing foils
  • plasma shutter

Cite this

Wei, W. Q., Yuan, X. H., Fang, Y., Ge, Z. Y., Ge, X. L., Yang, S., ... Zhang, J. (2017). Plasma optical shutter in ultraintense laser-foil interaction. Physics of Plasmas, 24(11), [113111]. https://doi.org/10.1063/1.5008843