Abstract
By employing dimensional analysis, we scale the equations of the mesoscopic model of finite temperature superfluid hydrodynamics. Based on this scaling, we set up three problems that depict the effects of kinematic, normal-fluid strain fields on superfluid vortex loops, and characterize small-scale processes in fully developed turbulence. We also develop a formula for the computation of energy spectra corresponding to superfluid vortex tangles in unbounded domains. Employing this formula, we compute energy spectra of superfluid vortex patterns induced by uniaxial, equibiaxial, and simple-shear normal-fluid flows. By comparing the steady-state superfluid spectra and vortex structures, we conclude that normal-flow strain fields do not play an important role in explaining the phenomenology of fully developed superfluid turbulence. This is in sharp contrast with the role of vortical normal-flow fields in offering plausible, structural explanations of superfluid vortex patterns and spectra entailed in numerical turbulent solutions of the mesoscopic model.
Original language | English |
---|---|
Article number | 044702 |
Journal | Physical Review Fluids |
Volume | 6 |
Issue number | 4 |
DOIs | |
Publication status | Published - 21 Apr 2021 |
Keywords
- superfluid hydrodynamics
- vortex loops
- turbulence
- vortex tangles