Physically plausible propeller noise prediction via recursive corrections leveraging prior knowledge and experimental data

Miltiadis Kalikatzarakis, Andrea Coraddu*, Mehmet Atlar, Stefano Gaggero, Giorgio Tani, Luca Oneto

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)
22 Downloads (Pure)

Abstract

For propeller-driven vessels, cavitation is the most dominant noise source producing both structure-borne and radiated noise impacting wildlife, passenger comfort, and underwater warfare. Physically plausible and accurate predictions of the underwater radiated noise at design stage, i.e., for previously untested geometries and operating conditions, are fundamental for designing silent and efficient propellers. State-of-the-art predictive models are based on physical, data-driven, and hybrid approaches. Physical models (PMs) meet the need for physically plausible predictions but are either too computationally demanding or not accurate enough at design stage. Data-driven models (DDMs) are computationally inexpensive ad accurate on average but sometimes produce physically implausible results. Hybrid models (HMs) combine PMs and DDMs trying to take advantage of their strengths while limiting their weaknesses but state-of-the-art hybridisation strategies do not actually blend them, failing to achieve the HMs full potential. In this work, for the first time, we propose a novel HM that recursively correct a state-of-the-art PM by means of a DDM which simultaneously exploits the prior physical knowledge in the definition of its feature set and the data coming from a vast experimental campaign at the Emerson Cavitation Tunnel on the Meridian standard propeller series behind different severities of the axial wake. Results in different extrapolating conditions, i.e., extrapolation with respect to propeller rotational speed, wakefield, and geometry, will support our proposal both in terms of accuracy and physical plausibility.

Original languageEnglish
Article number105660
Number of pages23
JournalEngineering Applications of Artificial Intelligence
Volume118
Early online date5 Dec 2022
DOIs
Publication statusPublished - 28 Feb 2023

Keywords

  • extrapolation
  • hybrid models
  • meridian standard propeller series
  • physical plausibility
  • prior knowledge
  • propeller cavitation noise
  • recursive corrections

Fingerprint

Dive into the research topics of 'Physically plausible propeller noise prediction via recursive corrections leveraging prior knowledge and experimental data'. Together they form a unique fingerprint.

Cite this