Abstract
For propeller-driven vessels, cavitation is the most dominant noise source producing both structure-borne and radiated noise impacting wildlife, passenger comfort, and underwater warfare. Physically plausible and accurate predictions of the underwater radiated noise at design stage, i.e., for previously untested geometries and operating conditions, are fundamental for designing silent and efficient propellers. State-of-the-art predictive models are based on physical, data-driven, and hybrid approaches. Physical models (PMs) meet the need for physically plausible predictions but are either too computationally demanding or not accurate enough at design stage. Data-driven models (DDMs) are computationally inexpensive ad accurate on average but sometimes produce physically implausible results. Hybrid models (HMs) combine PMs and DDMs trying to take advantage of their strengths while limiting their weaknesses but state-of-the-art hybridisation strategies do not actually blend them, failing to achieve the HMs full potential. In this work, for the first time, we propose a novel HM that recursively correct a state-of-the-art PM by means of a DDM which simultaneously exploits the prior physical knowledge in the definition of its feature set and the data coming from a vast experimental campaign at the Emerson Cavitation Tunnel on the Meridian standard propeller series behind different severities of the axial wake. Results in different extrapolating conditions, i.e., extrapolation with respect to propeller rotational speed, wakefield, and geometry, will support our proposal both in terms of accuracy and physical plausibility.
Original language | English |
---|---|
Article number | 105660 |
Number of pages | 23 |
Journal | Engineering Applications of Artificial Intelligence |
Volume | 118 |
Early online date | 5 Dec 2022 |
DOIs | |
Publication status | Published - 28 Feb 2023 |
Keywords
- extrapolation
- hybrid models
- meridian standard propeller series
- physical plausibility
- prior knowledge
- propeller cavitation noise
- recursive corrections