TY - JOUR
T1 - PCA-domain fused singular spectral analysis for fast and noise-robust spectral-spatial feature mining in hyperspectral classification
AU - Yan, Yijun
AU - Ren, Jinchang
AU - Liu, Qiaoyuan
AU - Zhao, Huimin
AU - Sun, Haijiang
AU - Zabalza, Jaime
N1 - © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
PY - 2021/10/19
Y1 - 2021/10/19
N2 - The principal component analysis (PCA) and 2-D singular spectral analysis (2DSSA) are widely used for spectral domain and spatial domain feature extraction in hyperspectral images (HSI). However, PCA itself suffers from low efficacy if no spatial information is combined, whilst 2DSSA can extract the spatial information yet has a high computing complexity. As a result, we propose in this paper a PCA domain 2DSSA approach for spectral-spatial feature mining in HSI. Specifically, PCA and its variation, folded-PCA are utilized to fuse with the 2DSSA, as folded-PCA can extract both global and local spectral features. By applying 2DSSA only on a small number of PCA components, the overall computational complexity has been significantly reduced whilst preserving the discrimination ability of the features. In addition, with the effective fusion of spectral and spatial features, the proposed approach can work well on the uncorrected dataset without removing the noisy and water absorption bands, even under a small number of training samples. Experiments on two publicly available datasets have fully demonstrated the superiority of the proposed approach, in comparison to several state-of-the-art HSI classification methods and deep-learning models.
AB - The principal component analysis (PCA) and 2-D singular spectral analysis (2DSSA) are widely used for spectral domain and spatial domain feature extraction in hyperspectral images (HSI). However, PCA itself suffers from low efficacy if no spatial information is combined, whilst 2DSSA can extract the spatial information yet has a high computing complexity. As a result, we propose in this paper a PCA domain 2DSSA approach for spectral-spatial feature mining in HSI. Specifically, PCA and its variation, folded-PCA are utilized to fuse with the 2DSSA, as folded-PCA can extract both global and local spectral features. By applying 2DSSA only on a small number of PCA components, the overall computational complexity has been significantly reduced whilst preserving the discrimination ability of the features. In addition, with the effective fusion of spectral and spatial features, the proposed approach can work well on the uncorrected dataset without removing the noisy and water absorption bands, even under a small number of training samples. Experiments on two publicly available datasets have fully demonstrated the superiority of the proposed approach, in comparison to several state-of-the-art HSI classification methods and deep-learning models.
KW - hyperspectral image (HSI)
KW - spectral-spatial feature mining
KW - principal component analysis (PCA)
KW - singular spectrum analysis (SSA)
U2 - 10.1109/LGRS.2021.3121565
DO - 10.1109/LGRS.2021.3121565
M3 - Article
SN - 1545-598X
VL - 20
SP - 1
EP - 5
JO - IEEE Geoscience and Remote Sensing Letters
JF - IEEE Geoscience and Remote Sensing Letters
ER -