Pathway-dependent regulation of sleep dynamics in a network model of the sleep-wake cycle

Charlotte Héricé, Shuzo Sakata

Research output: Contribution to journalArticle

Abstract

Sleep is a fundamental homeostatic process within the animal kingdom. Although various brain areas and cell types are involved in the regulation of the sleep-wake cycle, it is still unclear how different pathways between neural populations contribute to its regulation. Here we address this issue by investigating the behavior of a simplified network model upon synaptic weight manipulations. Our model consists of three neural populations connected by excitatory and inhibitory synapses. Activity in each population is described by a firing-rate model, which determines the state of the network. Namely wakefulness, rapid eye movement (REM) sleep or non-REM (NREM) sleep. By systematically manipulating the synaptic weight of every pathway, we show that even this simplified model exhibits non-trivial behaviors: for example, the wake-promoting population contributes not just to the induction and maintenance of wakefulness, but also to sleep induction. Although a recurrent excitatory connection of the REM-promoting population is essential for REM sleep genesis, this recurrent connection does not necessarily contribute to the maintenance of REM sleep. The duration of NREM sleep can be shortened or extended by changes in the synaptic strength of the pathways from the NREM-promoting population. In some cases, there is an optimal range of synaptic strengths that affect a particular state, implying that the amount of manipulations, not just direction (i.e., activation or inactivation), needs to be taken into account. These results demonstrate pathway-dependent regulation of sleep dynamics and highlight the importance of systems-level quantitative approaches for sleep-wake regulatory circuits.
Original languageEnglish
Article number01380
Number of pages14
JournalFrontiers in Neuroscience
Volume13
DOIs
Publication statusPublished - 20 Dec 2019

Fingerprint

Sleep
REM Sleep
Population
Wakefulness
Maintenance
Weights and Measures
Neural Pathways
Eye Movements
Synapses
Brain

Keywords

  • sleep regulatory circuits
  • computational model
  • brain state
  • sleep/wake cycle
  • Python programming language

Cite this

@article{55cc20ec56b741a389105bfdd2282d3a,
title = "Pathway-dependent regulation of sleep dynamics in a network model of the sleep-wake cycle",
abstract = "Sleep is a fundamental homeostatic process within the animal kingdom. Although various brain areas and cell types are involved in the regulation of the sleep-wake cycle, it is still unclear how different pathways between neural populations contribute to its regulation. Here we address this issue by investigating the behavior of a simplified network model upon synaptic weight manipulations. Our model consists of three neural populations connected by excitatory and inhibitory synapses. Activity in each population is described by a firing-rate model, which determines the state of the network. Namely wakefulness, rapid eye movement (REM) sleep or non-REM (NREM) sleep. By systematically manipulating the synaptic weight of every pathway, we show that even this simplified model exhibits non-trivial behaviors: for example, the wake-promoting population contributes not just to the induction and maintenance of wakefulness, but also to sleep induction. Although a recurrent excitatory connection of the REM-promoting population is essential for REM sleep genesis, this recurrent connection does not necessarily contribute to the maintenance of REM sleep. The duration of NREM sleep can be shortened or extended by changes in the synaptic strength of the pathways from the NREM-promoting population. In some cases, there is an optimal range of synaptic strengths that affect a particular state, implying that the amount of manipulations, not just direction (i.e., activation or inactivation), needs to be taken into account. These results demonstrate pathway-dependent regulation of sleep dynamics and highlight the importance of systems-level quantitative approaches for sleep-wake regulatory circuits.",
keywords = "sleep regulatory circuits, computational model, brain state, sleep/wake cycle, Python programming language",
author = "Charlotte H{\'e}ric{\'e} and Shuzo Sakata",
year = "2019",
month = "12",
day = "20",
doi = "10.3389/fnins.2019.01380",
language = "English",
volume = "13",
journal = "Frontiers in Neuroscience",
issn = "1662-4548",

}

Pathway-dependent regulation of sleep dynamics in a network model of the sleep-wake cycle. / Héricé, Charlotte; Sakata, Shuzo.

In: Frontiers in Neuroscience, Vol. 13, 01380, 20.12.2019.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Pathway-dependent regulation of sleep dynamics in a network model of the sleep-wake cycle

AU - Héricé, Charlotte

AU - Sakata, Shuzo

PY - 2019/12/20

Y1 - 2019/12/20

N2 - Sleep is a fundamental homeostatic process within the animal kingdom. Although various brain areas and cell types are involved in the regulation of the sleep-wake cycle, it is still unclear how different pathways between neural populations contribute to its regulation. Here we address this issue by investigating the behavior of a simplified network model upon synaptic weight manipulations. Our model consists of three neural populations connected by excitatory and inhibitory synapses. Activity in each population is described by a firing-rate model, which determines the state of the network. Namely wakefulness, rapid eye movement (REM) sleep or non-REM (NREM) sleep. By systematically manipulating the synaptic weight of every pathway, we show that even this simplified model exhibits non-trivial behaviors: for example, the wake-promoting population contributes not just to the induction and maintenance of wakefulness, but also to sleep induction. Although a recurrent excitatory connection of the REM-promoting population is essential for REM sleep genesis, this recurrent connection does not necessarily contribute to the maintenance of REM sleep. The duration of NREM sleep can be shortened or extended by changes in the synaptic strength of the pathways from the NREM-promoting population. In some cases, there is an optimal range of synaptic strengths that affect a particular state, implying that the amount of manipulations, not just direction (i.e., activation or inactivation), needs to be taken into account. These results demonstrate pathway-dependent regulation of sleep dynamics and highlight the importance of systems-level quantitative approaches for sleep-wake regulatory circuits.

AB - Sleep is a fundamental homeostatic process within the animal kingdom. Although various brain areas and cell types are involved in the regulation of the sleep-wake cycle, it is still unclear how different pathways between neural populations contribute to its regulation. Here we address this issue by investigating the behavior of a simplified network model upon synaptic weight manipulations. Our model consists of three neural populations connected by excitatory and inhibitory synapses. Activity in each population is described by a firing-rate model, which determines the state of the network. Namely wakefulness, rapid eye movement (REM) sleep or non-REM (NREM) sleep. By systematically manipulating the synaptic weight of every pathway, we show that even this simplified model exhibits non-trivial behaviors: for example, the wake-promoting population contributes not just to the induction and maintenance of wakefulness, but also to sleep induction. Although a recurrent excitatory connection of the REM-promoting population is essential for REM sleep genesis, this recurrent connection does not necessarily contribute to the maintenance of REM sleep. The duration of NREM sleep can be shortened or extended by changes in the synaptic strength of the pathways from the NREM-promoting population. In some cases, there is an optimal range of synaptic strengths that affect a particular state, implying that the amount of manipulations, not just direction (i.e., activation or inactivation), needs to be taken into account. These results demonstrate pathway-dependent regulation of sleep dynamics and highlight the importance of systems-level quantitative approaches for sleep-wake regulatory circuits.

KW - sleep regulatory circuits

KW - computational model

KW - brain state

KW - sleep/wake cycle

KW - Python programming language

U2 - 10.3389/fnins.2019.01380

DO - 10.3389/fnins.2019.01380

M3 - Article

VL - 13

JO - Frontiers in Neuroscience

JF - Frontiers in Neuroscience

SN - 1662-4548

M1 - 01380

ER -