Abstract
Use of a V3+:y(3)Al(5)O(12) crystal as a saturable absorber Q-switch for 1.07 and 1.35 mu m Nd:KGd(WO4)(2) diode pumped lasers shows a considerable dependence of output characteristics on the orientation of the intracavity field polarization vector regarding V3+:y(3)Al(5)O(12) crystallographic axes. Anisotropy of nonlinear absorption of V3+ ions in a Y3Al5O12 single crystal at wavelengths of 1.08 and 1.35 mu m has been experimentally studied. The experimental data are analyzed within the framework of a phenomenological model when the V3+ ions are described as three sets of linear dipoles oriented along the crystallographic axes. Ground-state and excited-state absorption cross sections at 1.08 and 1.35 mu m are evaluated to be sigma(gsa) = 3.4 x 10(-18) cm(2), sigma(esa) = 3.0 x 10(-19) cm(2) and sigma(gsa) = 5.4 x 10(-18) cm(2), sigma esa = 4.8 x 10(-19) cm(2), respectively. Saturation fluence and intensity at 1.08 and 1.35 mu m are estimated as 55 mJ/cm(2) and 1.1 MW/cm(2), respectively. (C) 2007 Optical Society of America.
Original language | English |
---|---|
Pages (from-to) | 5732-5737 |
Number of pages | 6 |
Journal | Applied Optics |
Volume | 46 |
Issue number | 23 |
DOIs | |
Publication status | Published - 10 Aug 2007 |
Keywords
- Yttrium aluminum garnet
- YAG saturable absorber
- V-YAG