Partial and total dielectronic recombination rate coefficients for W55+ to W38+

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Dielectronic recombination (DR) is the dominant mode of recombination in magnetically confined fusion plasmas for intermediate to low-charged ions of W. Complete, final-state resolved partial isonuclear W DR rate coefficient data is required for detailed collisional-radiative modelling for such plasmas in preparation for the upcoming fusion experiment ITER. To realize this requirement, we continueThe Tungsten Project by presenting our calculations for tungsten ions W55+ to W38+. As per our prior calculations for W73+ to W56+, we use the collision package AUTOSTRUCTURE to calculate partial and total DR rate coefficients for all relevant core-excitations in intermediate coupling (IC) and configuration average (CA) using κ-averaged relativistic wavefunctions. Radiative recombination (RR) rate coefficients are also calculated for the purpose of evaluating ionization fractions. Comparison of our DR rate coefficients for W46+ with other authors yields agreement to within 7-19% at peak abundance verifying the reliability of our method. Comparison of partial DR rate coefficients calculated in IC and CA yield differences of a factor ∼ 2 at peak abundance temperature, highlighting the importance of relativistic configuration mixing. Large differences are observed between ionization fractions calculated using our recombination rate coefficient data and that of Pütterich et al [Plasma Phys. and Control. Fusion 50 085016, (2008)]. These differences are attributed to
deficiencies in the average-atom method used by the former to calculate their data.
LanguageEnglish
Article number105201
Number of pages21
JournalJournal of Physics B: Atomic, Molecular and Optical Physics
Volume50
Issue number10
DOIs
Publication statusPublished - 27 Apr 2017

Fingerprint

coefficients
fusion
tungsten
configurations
ionization
radiative recombination
ions
requirements
preparation
collisions
excitation
atoms
temperature

Keywords

  • dielectronic recombination
  • tungsten

Cite this

@article{cfcbd0570f9348d99be55529d6e59a00,
title = "Partial and total dielectronic recombination rate coefficients for W55+ to W38+",
abstract = "Dielectronic recombination (DR) is the dominant mode of recombination in magnetically confined fusion plasmas for intermediate to low-charged ions of W. Complete, final-state resolved partial isonuclear W DR rate coefficient data is required for detailed collisional-radiative modelling for such plasmas in preparation for the upcoming fusion experiment ITER. To realize this requirement, we continueThe Tungsten Project by presenting our calculations for tungsten ions W55+ to W38+. As per our prior calculations for W73+ to W56+, we use the collision package AUTOSTRUCTURE to calculate partial and total DR rate coefficients for all relevant core-excitations in intermediate coupling (IC) and configuration average (CA) using κ-averaged relativistic wavefunctions. Radiative recombination (RR) rate coefficients are also calculated for the purpose of evaluating ionization fractions. Comparison of our DR rate coefficients for W46+ with other authors yields agreement to within 7-19{\%} at peak abundance verifying the reliability of our method. Comparison of partial DR rate coefficients calculated in IC and CA yield differences of a factor ∼ 2 at peak abundance temperature, highlighting the importance of relativistic configuration mixing. Large differences are observed between ionization fractions calculated using our recombination rate coefficient data and that of P{\"u}tterich et al [Plasma Phys. and Control. Fusion 50 085016, (2008)]. These differences are attributed to deficiencies in the average-atom method used by the former to calculate their data.",
keywords = "dielectronic recombination, tungsten",
author = "Preval, {S P} and Badnell, {N R} and O'Mullane, {M G}",
note = "This is an author-created, un-copyedited version of an article accepted for publication in Journal of Physics B: Atomic, Molecular and Optical Physics. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/1361-6455/aa6a3c.",
year = "2017",
month = "4",
day = "27",
doi = "10.1088/1361-6455/aa6a3c",
language = "English",
volume = "50",
journal = "Journal of Physics B: Atomic, Molecular and Optical Physics",
issn = "0953-4075",
number = "10",

}

TY - JOUR

T1 - Partial and total dielectronic recombination rate coefficients for W55+ to W38+

AU - Preval, S P

AU - Badnell, N R

AU - O'Mullane, M G

N1 - This is an author-created, un-copyedited version of an article accepted for publication in Journal of Physics B: Atomic, Molecular and Optical Physics. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/1361-6455/aa6a3c.

PY - 2017/4/27

Y1 - 2017/4/27

N2 - Dielectronic recombination (DR) is the dominant mode of recombination in magnetically confined fusion plasmas for intermediate to low-charged ions of W. Complete, final-state resolved partial isonuclear W DR rate coefficient data is required for detailed collisional-radiative modelling for such plasmas in preparation for the upcoming fusion experiment ITER. To realize this requirement, we continueThe Tungsten Project by presenting our calculations for tungsten ions W55+ to W38+. As per our prior calculations for W73+ to W56+, we use the collision package AUTOSTRUCTURE to calculate partial and total DR rate coefficients for all relevant core-excitations in intermediate coupling (IC) and configuration average (CA) using κ-averaged relativistic wavefunctions. Radiative recombination (RR) rate coefficients are also calculated for the purpose of evaluating ionization fractions. Comparison of our DR rate coefficients for W46+ with other authors yields agreement to within 7-19% at peak abundance verifying the reliability of our method. Comparison of partial DR rate coefficients calculated in IC and CA yield differences of a factor ∼ 2 at peak abundance temperature, highlighting the importance of relativistic configuration mixing. Large differences are observed between ionization fractions calculated using our recombination rate coefficient data and that of Pütterich et al [Plasma Phys. and Control. Fusion 50 085016, (2008)]. These differences are attributed to deficiencies in the average-atom method used by the former to calculate their data.

AB - Dielectronic recombination (DR) is the dominant mode of recombination in magnetically confined fusion plasmas for intermediate to low-charged ions of W. Complete, final-state resolved partial isonuclear W DR rate coefficient data is required for detailed collisional-radiative modelling for such plasmas in preparation for the upcoming fusion experiment ITER. To realize this requirement, we continueThe Tungsten Project by presenting our calculations for tungsten ions W55+ to W38+. As per our prior calculations for W73+ to W56+, we use the collision package AUTOSTRUCTURE to calculate partial and total DR rate coefficients for all relevant core-excitations in intermediate coupling (IC) and configuration average (CA) using κ-averaged relativistic wavefunctions. Radiative recombination (RR) rate coefficients are also calculated for the purpose of evaluating ionization fractions. Comparison of our DR rate coefficients for W46+ with other authors yields agreement to within 7-19% at peak abundance verifying the reliability of our method. Comparison of partial DR rate coefficients calculated in IC and CA yield differences of a factor ∼ 2 at peak abundance temperature, highlighting the importance of relativistic configuration mixing. Large differences are observed between ionization fractions calculated using our recombination rate coefficient data and that of Pütterich et al [Plasma Phys. and Control. Fusion 50 085016, (2008)]. These differences are attributed to deficiencies in the average-atom method used by the former to calculate their data.

KW - dielectronic recombination

KW - tungsten

UR - http://iopscience.iop.org/journal/0953-4075

U2 - 10.1088/1361-6455/aa6a3c

DO - 10.1088/1361-6455/aa6a3c

M3 - Article

VL - 50

JO - Journal of Physics B: Atomic, Molecular and Optical Physics

T2 - Journal of Physics B: Atomic, Molecular and Optical Physics

JF - Journal of Physics B: Atomic, Molecular and Optical Physics

SN - 0953-4075

IS - 10

M1 - 105201

ER -