TY - JOUR
T1 - p-Safe analysis of stochastic hybrid processes
AU - Wisniewski, Rafael
AU - Bujorianu, Manuela L.
AU - Sloth, Christoffer
N1 - © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
PY - 2020/12/31
Y1 - 2020/12/31
N2 - We develop a method for determining whether a stochastic system is safe, i.e., whether its trajectories reach unsafe states. Specifically, we define and solve a probabilistic safety problem for Markov processes. Based on the knowledge of the extended generator, we are able to develop an evolution equation, as a system of integral equations, describing the connection between unsafe and initial states. Subsequently, using the moment method, we approximate the infinite-dimensional optimization problem searching for the largest set of safe states by a finite-dimensional polynomial optimization problem. In particular, we address the above safety problem to a special class of stochastic hybrid processes, namely piecewise-deterministic Markov processes. These are characterized by deterministic dynamics and stochastic jumps, where both the time and the destination of the jumps are stochastic. In addition, the jumps can be both spontaneous (in the style of a Poisson process) and forced (governed by guards). In this case, the extended generator of this process and its corresponding martingale problem turn out to be defined on a rather restricted domain. To circumvent this difficulty, we bring the generalized differential formula of this process into the evolution equation and, subsequently, formulate a polynomial optimization.
AB - We develop a method for determining whether a stochastic system is safe, i.e., whether its trajectories reach unsafe states. Specifically, we define and solve a probabilistic safety problem for Markov processes. Based on the knowledge of the extended generator, we are able to develop an evolution equation, as a system of integral equations, describing the connection between unsafe and initial states. Subsequently, using the moment method, we approximate the infinite-dimensional optimization problem searching for the largest set of safe states by a finite-dimensional polynomial optimization problem. In particular, we address the above safety problem to a special class of stochastic hybrid processes, namely piecewise-deterministic Markov processes. These are characterized by deterministic dynamics and stochastic jumps, where both the time and the destination of the jumps are stochastic. In addition, the jumps can be both spontaneous (in the style of a Poisson process) and forced (governed by guards). In this case, the extended generator of this process and its corresponding martingale problem turn out to be defined on a rather restricted domain. To circumvent this difficulty, we bring the generalized differential formula of this process into the evolution equation and, subsequently, formulate a polynomial optimization.
KW - safety verification
KW - optimisation
KW - Markov processes
KW - stochastic hybrid systems
KW - moment method
KW - martingale problem
U2 - 10.1109/TAC.2020.2972789
DO - 10.1109/TAC.2020.2972789
M3 - Article
VL - 65
SP - 5220
EP - 5235
JO - IEEE Transactions on Automatic Control
JF - IEEE Transactions on Automatic Control
SN - 0018-9286
IS - 12
ER -