p-Multigrid for Fekete spectral element method

Victorita Dolean, Richard Pasquetti, Francesca Rapetti

Research output: Chapter in Book/Report/Conference proceedingConference contribution book

1 Citation (Scopus)

Abstract

Spectral element approximations based on triangular elements and on the so-called Fekete points of the triangle have been recently developed. p-multigrid methods offer an interesting way to resolve efficiently the resulting ill-conditioned algebraic systems. For elliptic problems, it is shown that a well chosen restriction operator and a good set up of the coarse grid matrices may lead to valuable results, even with a standard Gauss-Seidel smoother.

Original languageEnglish
Title of host publicationDomain Decomposition Methods in Science and Engineering XVII
EditorsUlrich Langer, Marco Discacciati, David E. Keyes, Olof B. Widlund, Walter Zulehner
Place of PublicationBerlin
PublisherSpringer
Pages485-492
Number of pages8
ISBN (Print)9783540751984, 9783540751991
DOIs
Publication statusPublished - 30 Nov 2007
Event17th International Conference on Domain Decomposition Methods - St. Wolfgang /Strobl, Austria
Duration: 3 Jul 20067 Jul 2006

Publication series

NameLecture Notes in Computational Science and Engineering
Volume60
ISSN (Print)1439-7358

Conference

Conference17th International Conference on Domain Decomposition Methods
CountryAustria
CitySt. Wolfgang /Strobl
Period3/07/067/07/06

Keywords

  • coarse grid
  • spectral element
  • Gauss point
  • quadrature point
  • spectral element method

Fingerprint Dive into the research topics of 'p-Multigrid for Fekete spectral element method'. Together they form a unique fingerprint.

  • Cite this

    Dolean, V., Pasquetti, R., & Rapetti, F. (2007). p-Multigrid for Fekete spectral element method. In U. Langer, M. Discacciati, D. E. Keyes, O. B. Widlund, & W. Zulehner (Eds.), Domain Decomposition Methods in Science and Engineering XVII (pp. 485-492). (Lecture Notes in Computational Science and Engineering; Vol. 60). Berlin: Springer. https://doi.org/10.1007/978-3-540-75199-1_61