Abstract
We present the theoretical and numerical study of a cylindrical two-dimensional periodic surface lattice (2D PSL) overmoded interaction cavity, excited by a thin, annular electron beam, immersed in a magnetic field. This high-power 0.2 THz radiation source with applications in plasma diagnostics, imaging, spectroscopy, radar, and communications is designed and simulated using the PIC solver of CST Microwave Studio. The amplitude of the corrugation is sufficiently small that the 2D PSL can be described as an effective metadielectric1. Coupling of volume and surface modes occurs2-6 when optimum parameters and dimensions are chosen. The energy of the electron beam and the periodicities of the PSL are chosen for effective electron beam coupling. We demonstrate the production of well-defined, high-power 0.2 THz radiation.
Original language | English |
---|---|
Number of pages | 1 |
Publication status | Published - 7 Dec 2020 |
Event | 47th IEEE International Conference on Plasma Science - Virtual Duration: 6 Dec 2020 → 10 Dec 2020 https://www.icops2020.org/public.asp?page=home.html |
Conference
Conference | 47th IEEE International Conference on Plasma Science |
---|---|
Abbreviated title | ICOPS 2020 |
Period | 6/12/20 → 10/12/20 |
Internet address |
Keywords
- overmoded
- high-power
- 0.2 THZ radiation source
- cylindrical Periodic Surface Lattice cavity