Projects per year
Abstract
The oscillatory rarefied gas flow in a three-dimensional (3D) rectangular cavity, which is frequently encountered in micro-electro-mechanical systems, is investigated on the basis of the gas kinetic theory. The effects of cavity aspect ratio, cavity depth ratio, and the oscillation frequency of the driving lid on flow characteristics and damping force are systematically studied using the discrete unified gas-kinetic scheme over a broad range of gas rarefactions. For the highly rarefied flow, when the lid oscillates at low frequency, as a consequence of the strong rarefaction effect, the damping force on the lid in a 3D cavity could even be smaller than that of a corresponding 2D one (i.e. the depth in the lateral direction approaching infinity). This finding contradicts our intuitive understanding that, the damping force is expected to be amplified due to the presence of the lateral walls. Meanwhile, when the lid oscillation frequency becomes sufficiently high, due to the effect of gas anti-resonance, the damping force on the oscillating lid will increase again as the depth reduces for the highly rarefied flow. In addition, the gas resonance and anti-resonance found inside the 2D cavity also appear in 3D ones, and the anti-resonance and resonance frequencies as a function of the cavity aspect ratio are nearly the same. However, the presence of the lateral walls will suppress their formation: the smaller the depth, the weaker intensity of the (anti-) resonance. These findings can help to design the structure of the micro-electro-mechanical devices.
Original language | English |
---|---|
Article number | 102002 |
Number of pages | 10 |
Journal | Physics of Fluids |
Volume | 30 |
Early online date | 19 Oct 2018 |
DOIs | |
Publication status | E-pub ahead of print - 19 Oct 2018 |
Keywords
- oscillatory flow
- rarefied gas dynamics
- three-dimensional rectangular cavity
Fingerprint
Dive into the research topics of 'Oscillatory rarefied gas flow inside a three dimensional rectangular cavity'. Together they form a unique fingerprint.Projects
- 2 Finished
-
Pore-Scale Study of Gas Flows in Ultra-tight Porous Media
Zhang, Y. (Principal Investigator) & Scanlon, T. (Co-investigator)
EPSRC (Engineering and Physical Sciences Research Council)
1/09/15 → 30/09/19
Project: Research
-
UK Consortium on Mesoscale Engineering Sciences (UKCOMES)
Zhang, Y. (Principal Investigator)
EPSRC (Engineering and Physical Sciences Research Council)
1/06/13 → 31/05/18
Project: Research