TY - JOUR
T1 - Origin and fate of A/H1N1 influenza in Scotland during 2009
AU - Lycett, Samantha
AU - McLeish, Nigel J.
AU - Robertson, Charles
AU - Carman, William
AU - Baillie, Gregory
AU - McMenamin, J.
AU - Rambaut, Andrew
AU - Simmonds, Peter
AU - Woodhouse, Mark
AU - Leigh-Brown, Andrew
PY - 2012/6
Y1 - 2012/6
N2 - The spread of influenza has usually been described by a 'density' model, where the largest centres of population drive the epidemic within a country. An alternative model emphasizing the role of air travel has recently been developed. We have examined the relative importance of the two in the context of the 2009 H1N1 influenza epidemic in Scotland. We obtained genome sequences of 70 strains representative of the geographical and temporal distribution of H1N1 influenza during the summer and winter phases of the pandemic in 2009. We analysed these strains, together with another 128 from the rest of the UK and 292 globally distributed strains, using maximum-likelihood phylogenetic and bayesian phylogeographical methods. This revealed strikingly different epidemic patterns within Scotland in the early and late parts of 2009. The summer epidemic in Scotland was characterized by multiple independent introductions from both international and other UK sources, followed by major local expansion of a single clade that probably originated in Birmingham. The winter phase, in contrast, was more diverse genetically, with several clades of similar size in different locations, some of which had no particularly close phylogenetic affinity to strains sampled from either Scotland or England. Overall there was evidence to support both models, with significant links demonstrated between North American sequences and those from England, and between England and East Asia, indicating that major air-travel routes played an important role in the pattern of spread of the pandemic, both within the UK and globally.
AB - The spread of influenza has usually been described by a 'density' model, where the largest centres of population drive the epidemic within a country. An alternative model emphasizing the role of air travel has recently been developed. We have examined the relative importance of the two in the context of the 2009 H1N1 influenza epidemic in Scotland. We obtained genome sequences of 70 strains representative of the geographical and temporal distribution of H1N1 influenza during the summer and winter phases of the pandemic in 2009. We analysed these strains, together with another 128 from the rest of the UK and 292 globally distributed strains, using maximum-likelihood phylogenetic and bayesian phylogeographical methods. This revealed strikingly different epidemic patterns within Scotland in the early and late parts of 2009. The summer epidemic in Scotland was characterized by multiple independent introductions from both international and other UK sources, followed by major local expansion of a single clade that probably originated in Birmingham. The winter phase, in contrast, was more diverse genetically, with several clades of similar size in different locations, some of which had no particularly close phylogenetic affinity to strains sampled from either Scotland or England. Overall there was evidence to support both models, with significant links demonstrated between North American sequences and those from England, and between England and East Asia, indicating that major air-travel routes played an important role in the pattern of spread of the pandemic, both within the UK and globally.
KW - influenza
KW - influenza A virus, H1N1 Subtype
KW - Scotland
U2 - 10.1099/vir.0.039370-0
DO - 10.1099/vir.0.039370-0
M3 - Article
VL - 93
SP - 1253
EP - 1260
JO - Journal of General Virology
JF - Journal of General Virology
IS - 6
ER -