Abstract
Treatment of a sulfide with a catalytic amount of a 1,3 diketone in the presence of silica sulfuric acid as a co-catalyst and hydrogen peroxide (50% aq) as the stoichiometric oxidant leads to the corresponding sulfoxide product. The reaction is effective for diaryl, aryl-alkyl and dialkyl sulfides and is tolerant of oxidisable and acid sensitive functional groups. Investigations have shown that the tris-peroxide 2, formed on reaction of pentane-2,4-dione with hydrogen peroxide under acidic reaction conditions, can oxidise two equivalents of sulfide using the exocyclic peroxide groups whereas the endocyclic peroxide remains intact. Calculations provide a mechanism consistent with experimental observations and suggest the reaction proceeds via an initial acid catalysed ring opening of a protonated tris-peroxide prior to oxygen transfer to a sulfur nucleophile.
Original language | English |
---|---|
Article number | 131784 |
Journal | Tetrahedron |
Volume | 78 |
Early online date | 24 Nov 2020 |
DOIs | |
Publication status | Published - 8 Jan 2021 |
Keywords
- peroxides
- sulfoxidation
- DFT calculations