Optomechanical transport of cold atoms induced by structured light

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)
10 Downloads (Pure)


Optomechanical pattern forming instabilities in a cloud of cold atoms lead to self-organized spatial structures of light and atoms. Here, we consider the optomechanical self-structuring of a cold atomic cloud in the presence of a phase structured input field, carrying orbital angular momentum. For a planar ring cavity setup, a model of coupled cavity field and atomic density equations describes a wide range of drifting modulation instabilities in the transverse plane. This leads to the formation of rotating self-organized rings of light-atom lattices. Using linear stability analysis and numerical simulations of the coupled atomic and optical dynamics, we demonstrate the presence of macroscopic atomic transport corresponding to the pattern rotation, induced by the structured pump phase profile.
Original languageEnglish
Article number023126
Number of pages9
JournalPhysical Review Research
Issue number2
Publication statusPublished - 4 May 2020


  • cold atoms
  • structured light
  • matter waves
  • optical votices


Dive into the research topics of 'Optomechanical transport of cold atoms induced by structured light'. Together they form a unique fingerprint.

Cite this