Optimizing the roles of unit and non-unit protection methods within DC microgrids

Steven Fletcher, Patrick Norman, Stuart Galloway, Paul Crolla, Graeme Burt

Research output: Contribution to journalArticlepeer-review

162 Citations (Scopus)
428 Downloads (Pure)


The characteristic behavior of physically compact, multiterminal dc networks under electrical fault conditions can produce demanding protection requirements. This represents a significant barrier to more widespread adoption of dc power distribution for microgrid applications. Protection schemes have been proposed within literature for such networks based around the use of non-unit protection methods. This paper shows however that there are severe limitations to the effectiveness of such schemes when employed for more complex microgrid network architectures. Even current differential schemes, which offer a more effective, though costly, protection solution, must be carefully designed to meet the design requirements resulting from the unique fault characteristics of dc microgrids. This paper presents a detailed analysis of dc microgrid behavior under fault conditions, illustrating the challenging protection requirements and demonstrating the shortcomings of non-unit approaches for these applications. Whilst the performance requirements for the effective operation of differential schemes in dc microgrids are shown to be stringent, the authors show how these may be met using COTS technologies. The culmination of this work is the proposal of a flexible protection scheme design framework for dc microgrid applications which enables the required levels of fault discrimination to be achieved whilst minimizing the associated installation costs.
Original languageEnglish
Pages (from-to)2079 - 2087
Number of pages9
JournalIEEE Transactions on Smart Grid
Issue number4
Early online date18 May 2012
Publication statusPublished - Dec 2012


  • DC power systems
  • fault currents
  • microgrid
  • power system protection


Dive into the research topics of 'Optimizing the roles of unit and non-unit protection methods within DC microgrids'. Together they form a unique fingerprint.

Cite this