Projects per year
Abstract
The aim of this paper is to devise a local optimal strategy for the orbital inclination change of solar sail spacecraft in low Earth orbit, combining the effects of the solar radiation pressure and atmospheric forces. The spacecraft is
modelled as a reflective flat plate. The acceleration due to effects of atmospheric forces and solar radiation pressure is computed, depending on the orbital parameters and attitude of the sail. Then, the attitude that maximizes
the instantaneous orbital inclination change is found through Gauss’ equations. When either one of these effects dominates over the other (and so, one can be neglected), the analytic expressions are found. When both effects are
considered, a numerical optimization is used. An additional constraint is introduced to avoid a decrease in the orbital semi major axis, and therefore prevent losses of orbital energy, while increasing the inclination. Different regions are identified, depending on whether the atmospheric effects dominate, the solar radiation pressure dominates, or the two are comparable. Arcs along the orbit are determined in which the optimal attitude can be found analytically, and the expression is derived. Numerical results show that a consistent increase of inclination can be achieved in a one-year mission, starting from different circular orbits, by applying the proposed control laws.
modelled as a reflective flat plate. The acceleration due to effects of atmospheric forces and solar radiation pressure is computed, depending on the orbital parameters and attitude of the sail. Then, the attitude that maximizes
the instantaneous orbital inclination change is found through Gauss’ equations. When either one of these effects dominates over the other (and so, one can be neglected), the analytic expressions are found. When both effects are
considered, a numerical optimization is used. An additional constraint is introduced to avoid a decrease in the orbital semi major axis, and therefore prevent losses of orbital energy, while increasing the inclination. Different regions are identified, depending on whether the atmospheric effects dominate, the solar radiation pressure dominates, or the two are comparable. Arcs along the orbit are determined in which the optimal attitude can be found analytically, and the expression is derived. Numerical results show that a consistent increase of inclination can be achieved in a one-year mission, starting from different circular orbits, by applying the proposed control laws.
Original language | English |
---|---|
Pages (from-to) | 1310-1323 |
Journal | Journal of Guidance, Control and Dynamics |
Volume | 36 |
Issue number | 5 |
DOIs | |
Publication status | Published - Sept 2013 |
Keywords
- solar sailing
- inclination change
- atmospheric pressure
- orbital dynamics
Fingerprint
Dive into the research topics of 'Optimal law for inclination change in an atmosphere through solar sailing'. Together they form a unique fingerprint.Projects
- 1 Finished
-
VISIONSPACE - VISIONARY SPACE SYSTEMS: ORBITAL DYNAMICS AT EXTREMES OF SPACECRAFT LENGTH SCALE (ERC ADVANCED GRANT)
McInnes, C.
European Commission - FP7 - European Research Council
1/02/09 → 30/09/14
Project: Research