Optical properties of apple skin and flesh in the wavelength range from 350 to 2200 nm

Wouter Saeys, Maria A. Velazco-Roa, Suresh N. Thennadil, H. Ramon, Bart Nicolai

Research output: Contribution to journalArticlepeer-review

153 Citations (Scopus)
365 Downloads (Pure)


Optical measurement of fruit quality is challenging due to the presence of a skin around the fruit flesh and the multiple scattering by the structured tissues. To gain insight in the light-tissue interaction, the optical properties of apple skin and flesh tissue are estimated in the 350-2200nm range for three cultivars. For this purpose, single integrating sphere measurements are combined with inverse adding- doubling. The observed absorption coefficient spectra are dominated by water in the near infrared and by pigments and chlorophyll in the visible region, whose concentrations are much higher in skin tissue. The scattering coefficient spectra show the monotonic decrease with increasing wavelength typical for biological tissues with skin tissue being approximately three times more scattering than flesh tissue. Comparison to the values from time-resolved spectroscopy reported in literature showed comparable profiles for the optical properties, but overestimation of the absorption coefficient values, due to light losses.
Original languageEnglish
Pages (from-to)908-919
Number of pages12
JournalApplied Optics
Issue number7
Publication statusPublished - 1 Mar 2008


  • optical
  • apple skin
  • apple flesh
  • wavelength


Dive into the research topics of 'Optical properties of apple skin and flesh in the wavelength range from 350 to 2200 nm'. Together they form a unique fingerprint.

Cite this