TY - JOUR
T1 - Optical projection tomography permits efficient assessment of infarct volume in the murine heart postmyocardial infarction
AU - Zhao, X.
AU - Wu, J.
AU - Gray, C. D.
AU - McGregor, K.
AU - Rossi, A. G.
AU - Morrison, H.
AU - Jansen, M. A.
AU - Gray, G. A.
PY - 2015/8/18
Y1 - 2015/8/18
N2 - The extent of infarct injury is a key determinant of structural and functional remodeling following myocardial infarction (MI). Infarct volume in experimental models of MI can be determined accurately by in vivo magnetic resonance imaging (MRI), but this is costly and not widely available. Experimental studies therefore commonly assess injury by histological analysis of sections sampled from the infarcted heart, an approach that is labor intensive, can be subjective, and does not fully assess the extent of injury. The present study aimed to assess the suitability of optical projection tomography (OPT) for identification of injured myocardium and for accurate and efficient assessment of infarct volume. Intact, perfusion-fixed, optically cleared hearts, collected from mice 7 days after induction of MI by coronary artery occlusion, were scanned by a tomograph for autofluorescence emission after UV excitation, generating _400 transaxial sections for reconstruction. Differential autofluorescence permitted discrimination between viable and injured myocardium and highlighted the heterogeneity within the infarct zone. Two-dimensional infarct areas derived from OPT imaging and Masson’s trichrome staining of slices from the same heart were highly correlated (r2 =0.99, P < 0.0001). Infarct volume derived from reconstructed OPT sections correlated with volume derived from in vivo late gadolinium enhancement MRI (r2 =0.7608, P < 0.005). Tissue processing for OPT did not compromise subsequent immunohistochemical detection of endothelial cell and inflammatory cell markers. OPT is thus a nondestructive, efficient, and accurate approach for routine in vitro assessment of murine myocardial infarct volume.
AB - The extent of infarct injury is a key determinant of structural and functional remodeling following myocardial infarction (MI). Infarct volume in experimental models of MI can be determined accurately by in vivo magnetic resonance imaging (MRI), but this is costly and not widely available. Experimental studies therefore commonly assess injury by histological analysis of sections sampled from the infarcted heart, an approach that is labor intensive, can be subjective, and does not fully assess the extent of injury. The present study aimed to assess the suitability of optical projection tomography (OPT) for identification of injured myocardium and for accurate and efficient assessment of infarct volume. Intact, perfusion-fixed, optically cleared hearts, collected from mice 7 days after induction of MI by coronary artery occlusion, were scanned by a tomograph for autofluorescence emission after UV excitation, generating _400 transaxial sections for reconstruction. Differential autofluorescence permitted discrimination between viable and injured myocardium and highlighted the heterogeneity within the infarct zone. Two-dimensional infarct areas derived from OPT imaging and Masson’s trichrome staining of slices from the same heart were highly correlated (r2 =0.99, P < 0.0001). Infarct volume derived from reconstructed OPT sections correlated with volume derived from in vivo late gadolinium enhancement MRI (r2 =0.7608, P < 0.005). Tissue processing for OPT did not compromise subsequent immunohistochemical detection of endothelial cell and inflammatory cell markers. OPT is thus a nondestructive, efficient, and accurate approach for routine in vitro assessment of murine myocardial infarct volume.
KW - ejection fraction
KW - late gadolinium enhancement magnetic resonance imaging
KW - masson’s trichrome
KW - mouse myocardial infarction
KW - troponin I
UR - http://www.scopus.com/inward/record.url?scp=84939440261&partnerID=8YFLogxK
U2 - 10.1152/ajpheart.00233.2015
DO - 10.1152/ajpheart.00233.2015
M3 - Article
C2 - 26071543
AN - SCOPUS:84939440261
SN - 0363-6135
VL - 309
SP - H702-H710
JO - American Journal of Physiology - Heart and Circulatory Physiology
JF - American Journal of Physiology - Heart and Circulatory Physiology
IS - 4
ER -