On using simulation to model the installation process logistics for an offshore wind farm

Research output: Working paper

70 Downloads (Pure)


The development of offshore wind farms (OWFs) in Europe is progressing to sites which are characteristically further from shore, in deeper waters, and of larger scale than previous sites. A consequence of moving further offshore is that installation operations are subject to harsher weather conditions, resulting in increased uncertainty in relation to the cost and duration of any operations. Assessing the comparative risks associated with different installation scenarios and identifying the best course of action is therefore a crucial problem for decision makers. Motivated by collaboration with industry partners, we present a detailed definition of the OWF installation process logistics problem, where aspects of fleet sizing, composition, and vessel scheduling are present. This article illustrates the use of simulation models to improve the understanding of the risks associated with logistical installation decisions. The developed tool employs a realistic model of the installation operations and enables the effect of any logistical decision to be investigated. A case study of an offshore wind farm installation project is presented in order to explore the impact of key logistical decisions on the cost and duration of the installation, and demonstrates that savings of up to 50% can be achieved through vessel optimization.
Original languageEnglish
Place of PublicationGlasgow
PublisherUniversity of Strathclyde
Number of pages30
Publication statusUnpublished - 2017


  • maritime industry operational research
  • simulation
  • renewable energy
  • offshore wind power
  • logistics management


Dive into the research topics of 'On using simulation to model the installation process logistics for an offshore wind farm'. Together they form a unique fingerprint.

Cite this