Abstract
A graph G = (V,E) is word-representable if there exists a word ω over the alphabet V such that letters x and y alternate in ω if and only if xy is an edge in E . It is known (Kitaev and Pyatkin, 2008) that any word-representable graph G is k-word-representable for some k, that is, there exists a word ω representing G such that each letter occurs exactly k times in ω. The minimum such k is called G’s representation number.
A crown graph (also known as a cocktail party graph) Hn,n is a graph obtained from the complete bipartite graph Kn,n by removing a perfect matching. In this paper, we show that for n≥ 5,Hn,n ’s representation number is [n / 2]. This result not only provides a complete solution to the open Problem 7.4.2 in Kitaev and Lozin (2015), but also gives a negative answer to the question raised in Problem 7.2.7 in Kitaev and Lozin (2015) on 3-word-representability of bipartite graphs. As a byproduct, we obtain a new example of a graph class with a high representation number.
A crown graph (also known as a cocktail party graph) Hn,n is a graph obtained from the complete bipartite graph Kn,n by removing a perfect matching. In this paper, we show that for n≥ 5,Hn,n ’s representation number is [n / 2]. This result not only provides a complete solution to the open Problem 7.4.2 in Kitaev and Lozin (2015), but also gives a negative answer to the question raised in Problem 7.2.7 in Kitaev and Lozin (2015) on 3-word-representability of bipartite graphs. As a byproduct, we obtain a new example of a graph class with a high representation number.
Original language | English |
---|---|
Pages (from-to) | 89-93 |
Number of pages | 5 |
Journal | Discrete Applied Mathematics |
Volume | 244 |
Early online date | 23 Mar 2018 |
DOIs | |
Publication status | Published - 31 Jul 2018 |
Keywords
- word-representable graph
- crown graph
- cocktail party graph
- representation number