Abstract
Electroplastic rolling was employed to produce nanostructured (NS), near-equiatomic NiTi alloy from a coarse grained NiTi nugget (ingot), which was produced using vacuum induction melting, followed by quenching in water from a temperature of 800°C. The microstructure of NS NiTi was characterized using X-ray Diffraction (XRD) and transmission electron microscopy (TEM). XRD analysis revealed that the NS NiTi is predominantly martensitic at room temperature, with less than ≈10 % of the austenite phase. The NS NiTi alloy has an average grain size of ≈36 nm. TEM investigation confirmed the presence of grains that are less than 10 nm in size and no amorphous zones were detected. The NS martensitic NiTi alloy specimens were tested in tension at two different strain rates (10−2 and 10−1 s−1). In contrast to a stress-strain profile expected in a martensitic NiTi alloy, the stress-strain curves show conventional tensile behaviour. The observed UTS was high, around ≈1800 MPa, with a less than usual elongation to failure of ≈6 %. The presence of dimples on the fracture surfaces can be seen in scanning electron microscopy (SEM) images, which is indicative of ductile fracture. The role of grain size in the observed deformation and fracture features is also discussed.
Original language | English |
---|---|
Pages (from-to) | 83-88 |
Number of pages | 6 |
Journal | Letters on Materials |
Volume | 12 |
Issue number | 2 |
Early online date | 30 Jun 2022 |
DOIs | |
Publication status | Published - Jun 2022 |
Keywords
- nanostructured NiTi
- martensitic NiTi
- shape memory alloy (SMA)
- tensile behaviour