Abstract
We consider determination of the propagator within the generalized acoustic analogy for prediction of supersonic jet noise. The propagator is a tensor functional of the adjoint vector Green’s function that requires solution of the linearized Euler equations for a given mean flow. The exact form of these equations can be obtained for a spreading jet. However since high Reynolds number jets have small spread rates, ϵ < < O(1), this parameter can be exploited to formulate an asymptotic model that encompasses mean flow spatial evolution at leading order. Such a model was used by Afsar et al. (AIAA-2017-3030 for prediction of supersonic jet noise. We show the existence of an overlap between this solution (valid at low frequencies) and one based on a locally parallel (i.e. non-spreading) mean flow, valid at O(1) frequencies. It is clear that there must exist an overlap between these solutions, since the former non-parallel solution was determined at the distinguished limit where the scaled frequency Ω=ω/ϵ=O(1) was held fixed. Hence the inner equation shows that as Ω→∞, non-parallelism will be confined to a thin streamwise region of size O(Ω−1) and will, therefore, be subdominant at leading order when ΩY=Y¯=O(1).
Original language | English |
---|---|
Publication status | Published - 19 Nov 2017 |
Event | The 70th Annual Meeting of the American Physical Society Division of Fluid Dynamics - Colorado Convention Center, Denver, United States Duration: 19 Nov 2017 → 21 Nov 2017 http://www.apsdfd2017.org/ |
Conference
Conference | The 70th Annual Meeting of the American Physical Society Division of Fluid Dynamics |
---|---|
Abbreviated title | APS DFD17 |
Country/Territory | United States |
City | Denver |
Period | 19/11/17 → 21/11/17 |
Internet address |
Keywords
- supersonic jet noise
- Green’s function
- acoustic analogy