On the creation of a subject specific finite element model of the wrist joint

M.K. Gislason, D.H. Nash, R. BARNES, A.B. Lennon (Editor), P.J. Prendergrast (Editor)

Research output: Chapter in Book/Report/Conference proceedingChapter

Abstract

Anatomy varies greatly between individuals and therefore it can be inaccurate to derive any clinical conclusions based on a single computer model. It is important to create models which are directly linked to a specific subject who then can be identified as a part of a larger population 1. By these means it is possible to draw conclusions about the discrepancy between two or more subjects or two or more subject groups. Advances have been made to create a subject specific finite element model of the hip, by using automated procedures 2. The hip poses a relatively simple geometry for such robust procedures to be implemented. However when faced with a more geometrically such as the wrist joint or the ankle joint, the procedure becomes more laborious since automatic procedures become impossible to apply. The geometry is the single most important factor for modeling such types of multi-bone systems and there needs to exist a good balance between creation time and level of accuracy and mesh refinement. In previously reported finite element studies of the wrist joint, ad hoc boundary conditions have been applied to the system. In creating a subject specific model it is important to apply boundary conditions that have been measured from the particular subject. Coupling subject specific boundary conditions with accurate application of material properties of the bones and soft tissues allows the creation of models to predict realistic in-vivo stresses on the carpal bones. In this study three subject specific finite element models were created of the wrist joint, ranging from the distal end of the radius and ulna to the proximal third of the metacarpals, a total of 14 bones were included in the model.
LanguageEnglish
Title of host publicationProceedings of the 2007 Summer Workshop of the European Society of Biomechanics
EditorsA.B. Lennon, P. J. Prendergrast
Pages122-124
Number of pages3
Publication statusPublished - 2007

Fingerprint

Bone
Boundary conditions
Geometry
Materials properties
Tissue

Keywords

  • biomechanics
  • mechanobiology
  • physiology
  • bioengineering
  • writst
  • hand
  • finite element model

Cite this

Gislason, M. K., Nash, D. H., BARNES, R., Lennon, A. B. (Ed.), & Prendergrast, P. J. (Ed.) (2007). On the creation of a subject specific finite element model of the wrist joint. In A. B. Lennon, & P. J. Prendergrast (Eds.), Proceedings of the 2007 Summer Workshop of the European Society of Biomechanics (pp. 122-124)
Gislason, M.K. ; Nash, D.H. ; BARNES, R. ; Lennon, A.B. (Editor) ; Prendergrast, P.J. (Editor). / On the creation of a subject specific finite element model of the wrist joint. Proceedings of the 2007 Summer Workshop of the European Society of Biomechanics. editor / A.B. Lennon ; P. J. Prendergrast. 2007. pp. 122-124
@inbook{4d67356766f3473b9e902750bd872ee5,
title = "On the creation of a subject specific finite element model of the wrist joint",
abstract = "Anatomy varies greatly between individuals and therefore it can be inaccurate to derive any clinical conclusions based on a single computer model. It is important to create models which are directly linked to a specific subject who then can be identified as a part of a larger population 1. By these means it is possible to draw conclusions about the discrepancy between two or more subjects or two or more subject groups. Advances have been made to create a subject specific finite element model of the hip, by using automated procedures 2. The hip poses a relatively simple geometry for such robust procedures to be implemented. However when faced with a more geometrically such as the wrist joint or the ankle joint, the procedure becomes more laborious since automatic procedures become impossible to apply. The geometry is the single most important factor for modeling such types of multi-bone systems and there needs to exist a good balance between creation time and level of accuracy and mesh refinement. In previously reported finite element studies of the wrist joint, ad hoc boundary conditions have been applied to the system. In creating a subject specific model it is important to apply boundary conditions that have been measured from the particular subject. Coupling subject specific boundary conditions with accurate application of material properties of the bones and soft tissues allows the creation of models to predict realistic in-vivo stresses on the carpal bones. In this study three subject specific finite element models were created of the wrist joint, ranging from the distal end of the radius and ulna to the proximal third of the metacarpals, a total of 14 bones were included in the model.",
keywords = "biomechanics, mechanobiology, physiology, bioengineering, writst, hand, finite element model",
author = "M.K. Gislason and D.H. Nash and R. BARNES and A.B. Lennon and P.J. Prendergrast",
year = "2007",
language = "English",
isbn = "095485831X",
pages = "122--124",
editor = "Lennon, {A.B. } and Prendergrast, {P. J. }",
booktitle = "Proceedings of the 2007 Summer Workshop of the European Society of Biomechanics",

}

Gislason, MK, Nash, DH, BARNES, R, Lennon, AB (ed.) & Prendergrast, PJ (ed.) 2007, On the creation of a subject specific finite element model of the wrist joint. in AB Lennon & PJ Prendergrast (eds), Proceedings of the 2007 Summer Workshop of the European Society of Biomechanics. pp. 122-124.

On the creation of a subject specific finite element model of the wrist joint. / Gislason, M.K.; Nash, D.H.; BARNES, R.; Lennon, A.B. (Editor); Prendergrast, P.J. (Editor).

Proceedings of the 2007 Summer Workshop of the European Society of Biomechanics. ed. / A.B. Lennon; P. J. Prendergrast. 2007. p. 122-124.

Research output: Chapter in Book/Report/Conference proceedingChapter

TY - CHAP

T1 - On the creation of a subject specific finite element model of the wrist joint

AU - Gislason, M.K.

AU - Nash, D.H.

AU - BARNES, R.

A2 - Lennon, A.B.

A2 - Prendergrast, P.J.

A2 - Lennon, A.B.

A2 - Prendergrast, P. J.

PY - 2007

Y1 - 2007

N2 - Anatomy varies greatly between individuals and therefore it can be inaccurate to derive any clinical conclusions based on a single computer model. It is important to create models which are directly linked to a specific subject who then can be identified as a part of a larger population 1. By these means it is possible to draw conclusions about the discrepancy between two or more subjects or two or more subject groups. Advances have been made to create a subject specific finite element model of the hip, by using automated procedures 2. The hip poses a relatively simple geometry for such robust procedures to be implemented. However when faced with a more geometrically such as the wrist joint or the ankle joint, the procedure becomes more laborious since automatic procedures become impossible to apply. The geometry is the single most important factor for modeling such types of multi-bone systems and there needs to exist a good balance between creation time and level of accuracy and mesh refinement. In previously reported finite element studies of the wrist joint, ad hoc boundary conditions have been applied to the system. In creating a subject specific model it is important to apply boundary conditions that have been measured from the particular subject. Coupling subject specific boundary conditions with accurate application of material properties of the bones and soft tissues allows the creation of models to predict realistic in-vivo stresses on the carpal bones. In this study three subject specific finite element models were created of the wrist joint, ranging from the distal end of the radius and ulna to the proximal third of the metacarpals, a total of 14 bones were included in the model.

AB - Anatomy varies greatly between individuals and therefore it can be inaccurate to derive any clinical conclusions based on a single computer model. It is important to create models which are directly linked to a specific subject who then can be identified as a part of a larger population 1. By these means it is possible to draw conclusions about the discrepancy between two or more subjects or two or more subject groups. Advances have been made to create a subject specific finite element model of the hip, by using automated procedures 2. The hip poses a relatively simple geometry for such robust procedures to be implemented. However when faced with a more geometrically such as the wrist joint or the ankle joint, the procedure becomes more laborious since automatic procedures become impossible to apply. The geometry is the single most important factor for modeling such types of multi-bone systems and there needs to exist a good balance between creation time and level of accuracy and mesh refinement. In previously reported finite element studies of the wrist joint, ad hoc boundary conditions have been applied to the system. In creating a subject specific model it is important to apply boundary conditions that have been measured from the particular subject. Coupling subject specific boundary conditions with accurate application of material properties of the bones and soft tissues allows the creation of models to predict realistic in-vivo stresses on the carpal bones. In this study three subject specific finite element models were created of the wrist joint, ranging from the distal end of the radius and ulna to the proximal third of the metacarpals, a total of 14 bones were included in the model.

KW - biomechanics

KW - mechanobiology

KW - physiology

KW - bioengineering

KW - writst

KW - hand

KW - finite element model

UR - http://www.nafems.org/events/other/members/page108/

M3 - Chapter

SN - 095485831X

SP - 122

EP - 124

BT - Proceedings of the 2007 Summer Workshop of the European Society of Biomechanics

ER -

Gislason MK, Nash DH, BARNES R, Lennon AB, (ed.), Prendergrast PJ, (ed.). On the creation of a subject specific finite element model of the wrist joint. In Lennon AB, Prendergrast PJ, editors, Proceedings of the 2007 Summer Workshop of the European Society of Biomechanics. 2007. p. 122-124