Abstract
The fragmentation of an Earth threatening asteroid as a result of a hazard mitigation mission is examined in this paper. The minimum required energy for a successful impulsive deflection of a threatening object is computed and compared with the energy required to break-up a small size asteroid. The fragmentation of an asteroid that underwent an impulsive deflection such as a kinetic impact or a nuclear explosion is a very plausible outcome in the light of this work. Thus a model describing the stochastic evolution of the cloud of fragments is described. The stochasticity of the fragmentation is given by a Gaussian probability distribution that describes the initial relative velocities of each fragment of the asteroid, while the size distribution is expressed through a power law function. The fragmentation model is applied to Apophis as illustrative example. If a barely catastrophic disruption (i.e. the largest fragment is half the size of the original asteroid) occurs 10 to 20 years prior to the Earth encounter only a reduction from 50% to 80% of the potential damage is achieved for the Apophis test case.
Original language | English |
---|---|
Number of pages | 14 |
Publication status | Published - 26 Sept 2008 |
Event | 59th International Astronautical Congress - Glasgow, Scotland Duration: 29 Sept 2008 → 3 Oct 2008 |
Conference
Conference | 59th International Astronautical Congress |
---|---|
City | Glasgow, Scotland |
Period | 29/09/08 → 3/10/08 |
Keywords
- near earth object
- asteroids
- mitigation stategy
- kinetic impact
- nuclear explosion
- fragmentation
- apophis test