On-chip time-correlated fluorescence lifetime extraction algorithms and error analysis

Day-Uei Li, Eleanor Bonnist, David Renshaw, Robert Henderson

Research output: Contribution to journalArticle

26 Citations (Scopus)

Abstract

A new, simple, and hardware-only fluorescence-lifetime-imaging microscopy (FLIM) is proposed to implement on-chip lifetime extractions, and their signal-to-noise-ratio based on statistics theory is also deduced. The results are compared with Monte Carlo simulations, giving good agreement. Compared with the commonly used iterative least-squares method or the maximum-likelihood-estimation- (MLE-) based, general purpose FLIM analysis software, our algorithm offers direct calculation of fluorescence lifetime based on the collected photon counts stored in on-chip counters and therefore delivers faster analysis for real-time applications, such as clinical diagnosis. Error analysis considering timing jitter based on statistics theory is carried out for the proposed algorithms and is also compared with MLE to obtain optimized channel width or measurement window and bit resolution of the time-to-digital converters for a given accuracy. A multi-exponential, pipelined fluorescence lifetime method based on the proposed algorithms is also introduced. The performance of the proposed methods has been tested on mono-exponential and four-exponential decay experimental data.
Original languageEnglish
Pages (from-to)1190-1198
Number of pages9
JournalJournal of the Optical Society of America A
Volume25
Issue number5
DOIs
Publication statusPublished - 31 May 2008

    Fingerprint

Keywords

  • fluorescence-lifetime-imaging microscopy
  • on-chip lifetime extractions
  • signal-to-noise-ratio
  • Monte Carlo simulations
  • maximum-likelihood-estimation

Cite this