Numerical study of an individual Taylor bubble rising through stagnant liquids under laminar flow regime

E.Z. Massoud, Q. Xiao, H.A. El-Gamal, M.A. Teamah

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)
22 Downloads (Pure)


Slug flow is one of the main flow regimes encountered in multiphase flow systems especially in oil and gas production systems. In the present study, the rise of single Taylor bubble through vertical stagnant Newtonian liquid is investigated by performing complete dimensionless treatment followed by an order of magnitude analysis of the terms of equations of motion. Based on this analysis, it is concluded that Froude, E€otv€os and Reynolds numbers are the sole physical parameters influencing the dimensionless slug flow equations. Using the guidelines of the order of magnitude analysis, computational fluid dynamics simulation is carried out to investigate the dynamics of Taylor bubbles in vertical pipe using the volume-of-fluid (VOF) method. Good agreement with previous experimental data and models available in the literature is established confirming that the density ratio, viscosity ratio and the initial ratio of bubble size to pipe diameter ðLTB=DÞ have minimal effect on the main hydrodynamic features of slug flow. Based on the developed results, correlations for the terminal velocity of the Taylor bubble and the dimensionless wall shear stress are proposed showing the significance of these main dimensionless parameters and support other important theoretical and experimental work available in the literature.
Original languageEnglish
Pages (from-to)117-137
Number of pages21
JournalOcean Engineering
Early online date29 May 2018
Publication statusPublished - 15 Aug 2018


  • slug flow
  • order of magnitude analysis
  • Taylor bubble velocity
  • VOF method


Dive into the research topics of 'Numerical study of an individual Taylor bubble rising through stagnant liquids under laminar flow regime'. Together they form a unique fingerprint.

Cite this