TY - JOUR
T1 - Numerical investigation of a premixed combustion large marine two-stroke dual fuel engine for optimising engine settings via parametric runs
AU - Mavrelos, Christoforos
AU - Theotokatos, Gerasimos
N1 - accepted on 30 December 2017
PY - 2018/3/15
Y1 - 2018/3/15
N2 - As the environmental regulations have become more stringent, the shipping industry has been focusing on more efficient and environmentally friendly means of propulsion and electric power generation. In this respect, dual fuel engines, which operate either in diesel mode or dual fuel (DF) mode by burning diesel fuel or natural gas and pilot diesel fuel to initiate ignition respectively, has become one of the most promising solutions as their dual fuel operation leads to reduced nitrogen oxide (NOx), carbon dioxide (CO2), as well as almost elimination of particulate matter (PM) and sulphur oxide (SOx) emissions. The present study focuses on the comprehensive investigation of a large marine two-stroke dual fuel engine of the low gas pressure concept by using the GT-Power™ software. Appropriate combustion, scavenging, heat transfer and friction models were used to fully represent the engine performance and emissions characteristics whereas a knocking model was employed to characterise the engine abnormal combustion. The simulation results were initially validated against the manufacturer data and subsequently, the entire engine envelope in both operating modes was simulated. The derived results were used for analysing and discussing the engine operation, performance and emissions as well as for comparing the two operating modes in terms of the turbocharger matching. In addition, a parametric investigation was performed in the dual fuel mode and the results were used for identifying the settings that can further optimize the engine operation in terms of CO2 and NOx emissions trade-off. The results indicate that the CO2 and NOx emissions can be simultaneously reduced; however, the engine optimisation in the high load region is challenging due to the permissible cylinder pressure constraint.
AB - As the environmental regulations have become more stringent, the shipping industry has been focusing on more efficient and environmentally friendly means of propulsion and electric power generation. In this respect, dual fuel engines, which operate either in diesel mode or dual fuel (DF) mode by burning diesel fuel or natural gas and pilot diesel fuel to initiate ignition respectively, has become one of the most promising solutions as their dual fuel operation leads to reduced nitrogen oxide (NOx), carbon dioxide (CO2), as well as almost elimination of particulate matter (PM) and sulphur oxide (SOx) emissions. The present study focuses on the comprehensive investigation of a large marine two-stroke dual fuel engine of the low gas pressure concept by using the GT-Power™ software. Appropriate combustion, scavenging, heat transfer and friction models were used to fully represent the engine performance and emissions characteristics whereas a knocking model was employed to characterise the engine abnormal combustion. The simulation results were initially validated against the manufacturer data and subsequently, the entire engine envelope in both operating modes was simulated. The derived results were used for analysing and discussing the engine operation, performance and emissions as well as for comparing the two operating modes in terms of the turbocharger matching. In addition, a parametric investigation was performed in the dual fuel mode and the results were used for identifying the settings that can further optimize the engine operation in terms of CO2 and NOx emissions trade-off. The results indicate that the CO2 and NOx emissions can be simultaneously reduced; however, the engine optimisation in the high load region is challenging due to the permissible cylinder pressure constraint.
KW - dual fuel premixed combustion
KW - two-stroke engine
KW - simulation
KW - performance and emissions
KW - engine knocking
KW - engine optimisation
UR - https://www.sciencedirect.com/science/journal/01968904
U2 - 10.1016/j.enconman.2017.12.097
DO - 10.1016/j.enconman.2017.12.097
M3 - Article
SN - 0196-8904
VL - 160
SP - 48
EP - 59
JO - Energy Conversion and Management
JF - Energy Conversion and Management
ER -