Abstract
This work presents an assessment of classical and state of the art reduced order modelling (ROM) techniques to enhance the computational efficiency for dynamic analysis of jointed structures with local contact nonlinearities. These ROM methods include classical free interface method (Rubin method, MacNeal method), fixed interface method (Craig-Bampton), Dual Craig-Bampton (DCB) method and also recently developed joint interface mode (JIM) and trial vector derivative (TVD) approaches. A finite element jointed beam model is considered as the test case taking into account two different setups: one with a linearized spring joint and the other with a nonlinear macro-slip contact friction joint. Using these ROM techniques, the accuracy of dynamic behaviors and their computational expense are compared separately. We also studied the effect of excitation levels, joint region size and number of modes on the performance of these ROM methods.
Original language | English |
---|---|
Title of host publication | ASME Turbo Expo 2018 |
Subtitle of host publication | Turbomachinery Technical Conference and Exposition |
Place of Publication | New York |
Number of pages | 12 |
DOIs | |
Publication status | Published - 30 Aug 2018 |
Externally published | Yes |
Event | ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, GT 2018 - Oslo, Norway Duration: 11 Jun 2018 → 15 Jun 2018 |
Conference
Conference | ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, GT 2018 |
---|---|
Country/Territory | Norway |
City | Oslo |
Period | 11/06/18 → 15/06/18 |
Keywords
- dynamic analysis
- modelling
- jointed structures