Numerical and experimental design study of a regenerative pump

Francis J. Quail, M.T. Stickland, T.J. Scanlon

Research output: Chapter in Book/Report/Conference proceedingChapter

6 Citations (Scopus)
197 Downloads (Pure)

Abstract

This paper presents the use of a commercial CFD code to simulate the flow-field within the regenerative pump and compare the CFD results with new experimental data. Regenerative pumps are the subject of increased interest in industry as these pumps are low cost, low specific speed, compact and able to deliver high heads with stable performance characteristics. The complex flow-field within the regenerative pump represents a considerable challenge to detailed mathematical modelling. This paper also presents a novel rapid manufacturing process used to consider the effect of impeller geometry changes on the pump efficiency. Ten modified impeller blade profiles, relative to a standard radial configuration, were evaluated. The CFD performance results demonstrate reasonable agreement with the experimental tests. The CFD results also demonstrate that it is possible to represent the helical flow field for the pump which has been witnessed only in experimental flow visualisation until now. The ability to use CFD modelling in conjunction with rapid manufacturing techniques has meant that more complex impeller geometry configurations can now be assessed with better understanding of the flow-field and resulting efficiency.
Original languageEnglish
Title of host publicationCurrent Themes in Engineering Science
Subtitle of host publicationSelected Presentations at the World Congress on Engineering 2009 (AIP Conference Proceedings / Mathematical and Statistical Physics)
EditorsA.M. Korsunsky
Pages165-180
Number of pages15
Publication statusPublished - 31 Mar 2010

Keywords

  • CFD
  • regenerative pump
  • helical flow
  • impeller

Fingerprint

Dive into the research topics of 'Numerical and experimental design study of a regenerative pump'. Together they form a unique fingerprint.

Cite this