Novel numerical optimisation of the Hohmann Spiral Transfer

Steven Robert Owens, Malcolm Macdonald

Research output: Contribution to conferencePaper

2 Citations (Scopus)
133 Downloads (Pure)


As the revenue of commercial spacecraft platforms is generated by its payload, of which the capacity is maximised when fuel-mass is minimised, there is great interest in ensuring the fuel required for the trajectory to deliver the satellite to its working orbit is minimum. This paper presents an optimisation study of a novel orbit transfer, recently introduced by the authors through an analytical analysis, known as the Hohmann Spiral Transfer . The transfer is analogous to the bi-elliptic transfer but incorporating high and low-thrust propulsion. This paper has shown that substantial fuel mass savings are possible when utilizing the HST. For a transfer to Geostationary Earth Orbit it is shown that a fuel mass saving of approximately 320 kg (~ 5 - 10% of mwet ) is possible for a wet mass of 3000-6000 kg – whilst satisfying a time constraint of 90 days. Several trends in the gathered data are also identified that determine when the HST with high or low-thrust plane change should be used to offer the greatest fuel mass benefit.
Original languageEnglish
PagesPaper IAC-13-C1.6.7
Number of pages11
Publication statusPublished - 23 Sep 2013
Event64th International Astronautical Congress 2013 - Beijing, China
Duration: 23 Sep 201327 Sep 2013


Conference64th International Astronautical Congress 2013


  • Hohmann Spiral Transfer (HST)
  • high-thrust propulsion
  • low-thrust propulsion
  • geostationary earth orbit


Dive into the research topics of 'Novel numerical optimisation of the Hohmann Spiral Transfer'. Together they form a unique fingerprint.

Cite this