Abstract
The liposomes were prepared using the conventional thin film hydration method with and without peptide RF-482. The loading of RF-482 was determined using BCA assay and the RSV inhibition was studied using immune-fluorescence imaging, plaque assay and PCR. There was little size change observed after loading RF-482. However, this change was not significant. It was observed that 77.3 % (n=3, ±2.2 %) protein was found non-encapsulated, hence it can be concluded that 22.7 % of peptide RF-482 was encapsulated. Plaque assay confirms above 60 % inhibition with just peptide RF-482 and liposomes. However, with peptide loaded liposomes more than 70 % inhibition was observed. Screening of RSV-F gene amplicon and comparison of viral gene amplicon and peptide, liposomes as well as functionalised liposomes along with water as negative control confirms the competitive inhibition of RSV by RF-482 as well as liposomes with and without peptide. Overall, it was found that similar to GNPs and FGNPs (Tiwari et al., 2014), empty liposomes as well as liposomes loaded with RF-482 can inhibit RSV fusion to HEP-2 cells and thereby save HEP-2 cells from infection. Immunofluorescence imaging confirms the inhibitory effect of liposomes with and without peptide RF-482.
Original language | English |
---|---|
Title of host publication | Biotech, Biomaterials and Biomedical |
Subtitle of host publication | TechConnect Briefs 2017 |
Place of Publication | California |
Pages | 75-78 |
Number of pages | 4 |
Publication status | Published - 14 May 2017 |
Event | 11th Annual TechConnect World Innovation Conference and Expo, Held Jointly with the 20th Annual Nanotech Conference and Expo, and the 2017 National SBIR/STTR Conference - Washington, United States Duration: 14 May 2017 → 17 May 2017 |
Conference
Conference | 11th Annual TechConnect World Innovation Conference and Expo, Held Jointly with the 20th Annual Nanotech Conference and Expo, and the 2017 National SBIR/STTR Conference |
---|---|
Country/Territory | United States |
City | Washington |
Period | 14/05/17 → 17/05/17 |
Keywords
- nano-biomaterial
- liposome
- respiratory syncytial virus