Novel "anchor modification" of polymeric biomaterial surfaces by the utilization of cyclodextrin inclusion complex supramolecules

X.B. Zhao, J.M. Courtney

    Research output: Contribution to journalArticle

    4 Citations (Scopus)

    Abstract

    In this article, a novel approach for the surface modification of polymeric biomaterials by the utilization of supramolecules was studied. The supramolecules selected were cyclodextrin inclusion complexes (CICs). The biomaterial selected for surface modification was plasticized poly (vinyl chloride) (PVC-P). Results indicate that when the CICs were blended into PVC-P, they tend to migrate and anchor on the surface to achieve a remarkable protein-resistant surface, with improved blood compatibility. In comparison with a physical mixture of cyclodextrins and a guest molecule, such as poly(ethylene oxide) (PEO)-poly(propylene oxide) (PPO)-PEO and PPO-PEO-PPO for PVC-P modification, CICs modified PVC-P are more consistent in processing and achieve reproducible surface characteristics. Based on this study, a novel anchor modification was proposed regarding CICs modified surface. This anchor modification is likely to reduce plasticizer extraction from PVC-P and also can be utilized for the modification of polymers other than PVC-P.
    Original languageEnglish
    Pages (from-to)282-291
    Number of pages9
    JournalJournal of Biomedical Materials Research Part A
    Volume90A
    Issue number1
    DOIs
    Publication statusPublished - Jul 2009

      Fingerprint

    Keywords

    • plasticized poly (vinyl chloride)
    • surface modification
    • protein adsorption
    • cyclodextrins
    • cyclodextrin inclusion complex
    • supramolecules

    Cite this