Projects per year
Abstract
Gas-filled capillary discharge waveguides are important structures in laser-plasma interaction applications, such as the laser wakefield accelerator. We present the methodology for applying femtosecond laser micromachining in the production of capillary channels (typically 200–300 μm in diameter and 30–40 mm in length), including the formalism for capillaries with a linearly tapered diameter. The latter is demonstrated to possess a smooth variation in diameter along the length of the capillary (tunable with the micromachining trajectories). This would lead to a longitudinal plasma density gradient in the waveguide that may dramatically improve the laser-plasma interaction efficiency in applications.
Original language | English |
---|---|
Article number | 096104 |
Number of pages | 3 |
Journal | Review of Scientific Instruments |
Volume | 82 |
Issue number | 9 |
DOIs | |
Publication status | Published - 21 Sept 2011 |
Keywords
- high speed optical techniques
- laser beam machining
- plasma density
- optical waveguides
Fingerprint
Dive into the research topics of 'Note: femtosecond laser micromachining of straight and linearly tapered capillary discharge waveguides'. Together they form a unique fingerprint.Projects
- 3 Finished
-
LaserLab Europe - The Integrated Initiative of European Laser Research Infrastructures II (FP7 Research Infrastructures)
Jaroszynski, D. (Principal Investigator)
European Commission - FP7 - General
1/03/09 → 31/05/12
Project: Research
-
Extreme light infrastructure (ELI)
Jaroszynski, D. (Principal Investigator)
STFC Science and Technology Facilities Council
1/04/08 → 31/03/11
Project: Research
-
HARNESSING LASER-DRIVEN PLASMA WAVES AS PARTICLE AND RADIATION SOURCES
Jaroszynski, D. (Principal Investigator), Bingham, R. (Co-investigator), Ledingham, K. (Co-investigator) & McKenna, P. (Co-investigator)
EPSRC (Engineering and Physical Sciences Research Council)
1/03/07 → 31/08/11
Project: Research