Nonlinear convolution finite element method for solution of large deformation elastodynamics

A. Amiri-Hezaveh, M. Ostoja-Starzewski*, Hamed Moghaddasi

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

23 Downloads (Pure)

Abstract

A new algorithm based on the convolution finite element method (CFEM) is proposed for the nonlinear wave propagation in elastic media. The formulation is developed in the context of the total Lagrangian framework, encompassing contributions due to both geometrical and material nonlinearities. As a basis, a counterpart of equations of motion – namely, the alternative field equations – is first established. The satisfaction of the alternative field equations is then realized in a weak sense. Next, the Newton–Raphson procedure and the consistent tangential matrix are applied to the weak formulation, where the CFEM is used as the linear solver in each iteration. Finally, several examples are carried out to examine the theoretical aspects and the feasibility of the proposed algorithm. In particular, problems of free vibration of Neo-Hookean and Saint Venant–Kirchhoff plates are explored. Also, a cantilever beam of the Neo-Hookean material is simulated for the case of forced vibrations. Conspicuously, in contrast to the existing time-step methods with finite order of accuracy, the new solution procedure obtains the accurate solution when the time-step size is increased.

Original languageEnglish
Article number115847
Number of pages25
JournalComputer Methods in Applied Mechanics and Engineering
Volume407
Early online date10 Feb 2023
DOIs
Publication statusPublished - 15 Mar 2023

Keywords

  • conservation of angular momentum
  • conservation of energy
  • convolution finite element method
  • initial boundary value problems
  • nonlinear elastodynamics

Fingerprint

Dive into the research topics of 'Nonlinear convolution finite element method for solution of large deformation elastodynamics'. Together they form a unique fingerprint.

Cite this