New ormia-inspired directional MEMS microphone operating in a low frequency band

Research output: Contribution to journalConference Contribution

Abstract

Directional MEMS microphones inspired by the parasitoid fly Ormia ochracea have been studied since the discovery that the micro-scale tympana structure of this female fly can amplify and locate narrow band mating calls from its host. This presentation will concentrate on the first piezoelectric Ormia-inspired MEMS microphone that operates in a low range of frequency bands overlapping with human vocal frequencies, and as such is suitable for hearing aid applications. Including two plates performing as Ormia’s two tympana, the entire region in motion in our microphone is about 3.2 mm × 1.42 mm × 10 μm. Compared to other piezoelectric Ormia-inspired designs, our design transfers the working frequency band from over 10 kHz to below 3 kHz due to its asymmetric structure and an S-type rotational cantilever. Furthermore, it provides a unidirectional response around two resonance frequencies below 3 kHz. The open-circuit acoustic response of the device is approximately 3.9 mV/Pa at 464 Hz which is close to human vocal frequencies, with a maximum value of 9.9 mV/Pa at 2275 Hz, which is near the frequency region where the human auditory system is most sensitive. The new microphone, coupled with a custom-built preamplifier, has a noise floor of 10 μV/√Hz at 1 kHz.

Fingerprint

Microphones
microphones
Frequency bands
microelectromechanical systems
MEMS
low frequencies
Hearing aids
Acoustics
preamplifiers
hearing
narrowband
Networks (circuits)
acoustics

Keywords

  • microphones
  • microelectromechanical systems
  • piezoelectricity
  • hearing aids
  • acoustic resonance

Cite this

@article{679e59f78770479ab9c184d6688aefb1,
title = "New ormia-inspired directional MEMS microphone operating in a low frequency band",
abstract = "Directional MEMS microphones inspired by the parasitoid fly Ormia ochracea have been studied since the discovery that the micro-scale tympana structure of this female fly can amplify and locate narrow band mating calls from its host. This presentation will concentrate on the first piezoelectric Ormia-inspired MEMS microphone that operates in a low range of frequency bands overlapping with human vocal frequencies, and as such is suitable for hearing aid applications. Including two plates performing as Ormia’s two tympana, the entire region in motion in our microphone is about 3.2 mm × 1.42 mm × 10 μm. Compared to other piezoelectric Ormia-inspired designs, our design transfers the working frequency band from over 10 kHz to below 3 kHz due to its asymmetric structure and an S-type rotational cantilever. Furthermore, it provides a unidirectional response around two resonance frequencies below 3 kHz. The open-circuit acoustic response of the device is approximately 3.9 mV/Pa at 464 Hz which is close to human vocal frequencies, with a maximum value of 9.9 mV/Pa at 2275 Hz, which is near the frequency region where the human auditory system is most sensitive. The new microphone, coupled with a custom-built preamplifier, has a noise floor of 10 μV/√Hz at 1 kHz.",
keywords = "microphones, microelectromechanical systems, piezoelectricity, hearing aids, acoustic resonance",
author = "Yansheng Zhang and Ralf Bauer and Windmill, {James F.} and Deepak Uttamchandani and Joseph Jackson",
year = "2017",
month = "6",
day = "10",
doi = "10.1121/1.4988367",
language = "English",
volume = "141",
journal = "Journal of the Acoustical Society of America",
issn = "0001-4966",
number = "5",

}

TY - JOUR

T1 - New ormia-inspired directional MEMS microphone operating in a low frequency band

AU - Zhang, Yansheng

AU - Bauer, Ralf

AU - Windmill, James F.

AU - Uttamchandani, Deepak

AU - Jackson, Joseph

PY - 2017/6/10

Y1 - 2017/6/10

N2 - Directional MEMS microphones inspired by the parasitoid fly Ormia ochracea have been studied since the discovery that the micro-scale tympana structure of this female fly can amplify and locate narrow band mating calls from its host. This presentation will concentrate on the first piezoelectric Ormia-inspired MEMS microphone that operates in a low range of frequency bands overlapping with human vocal frequencies, and as such is suitable for hearing aid applications. Including two plates performing as Ormia’s two tympana, the entire region in motion in our microphone is about 3.2 mm × 1.42 mm × 10 μm. Compared to other piezoelectric Ormia-inspired designs, our design transfers the working frequency band from over 10 kHz to below 3 kHz due to its asymmetric structure and an S-type rotational cantilever. Furthermore, it provides a unidirectional response around two resonance frequencies below 3 kHz. The open-circuit acoustic response of the device is approximately 3.9 mV/Pa at 464 Hz which is close to human vocal frequencies, with a maximum value of 9.9 mV/Pa at 2275 Hz, which is near the frequency region where the human auditory system is most sensitive. The new microphone, coupled with a custom-built preamplifier, has a noise floor of 10 μV/√Hz at 1 kHz.

AB - Directional MEMS microphones inspired by the parasitoid fly Ormia ochracea have been studied since the discovery that the micro-scale tympana structure of this female fly can amplify and locate narrow band mating calls from its host. This presentation will concentrate on the first piezoelectric Ormia-inspired MEMS microphone that operates in a low range of frequency bands overlapping with human vocal frequencies, and as such is suitable for hearing aid applications. Including two plates performing as Ormia’s two tympana, the entire region in motion in our microphone is about 3.2 mm × 1.42 mm × 10 μm. Compared to other piezoelectric Ormia-inspired designs, our design transfers the working frequency band from over 10 kHz to below 3 kHz due to its asymmetric structure and an S-type rotational cantilever. Furthermore, it provides a unidirectional response around two resonance frequencies below 3 kHz. The open-circuit acoustic response of the device is approximately 3.9 mV/Pa at 464 Hz which is close to human vocal frequencies, with a maximum value of 9.9 mV/Pa at 2275 Hz, which is near the frequency region where the human auditory system is most sensitive. The new microphone, coupled with a custom-built preamplifier, has a noise floor of 10 μV/√Hz at 1 kHz.

KW - microphones

KW - microelectromechanical systems

KW - piezoelectricity

KW - hearing aids

KW - acoustic resonance

U2 - 10.1121/1.4988367

DO - 10.1121/1.4988367

M3 - Conference Contribution

VL - 141

JO - Journal of the Acoustical Society of America

T2 - Journal of the Acoustical Society of America

JF - Journal of the Acoustical Society of America

SN - 0001-4966

IS - 5

M1 - 3794

ER -