New insights on growth mechanisms of protein clusters at surfaces: an AFM and simulation study

D. Pellenc, R.A. Bennett, R.J. Green, M. Sperrin, P.A. Mulheran

Research output: Contribution to journalArticlepeer-review

28 Citations (Scopus)


Despite its relevance to a wide range of technological and fundamental areas, a quantitative understanding of protein surface clustering dynamics is often lacking. In inorganic crystal growth, surface clustering of adatoms is well described by diffusion-aggregation models. In such models, the statistical properties of the aggregate arrays often reveal the molecular scale aggregation processes. We investigate the potential of these theories to reveal hitherto hidden facets of protein clustering by carrying out concomitant observations of lysozyme adsorption onto mica surfaces, using atomic force microscopy. and Monte Carlo simulations of cluster nucleation and growth. We find that lysozyme clusters diffuse across the substrate at a rate that varies inversely with size. This result suggests which molecular scale mechanisms are responsible for the mobility of the proteins on the substrate. In addition the surface diffusion coefficient of the monomer can also be extracted from the comparison between experiments and simulations. While concentrating on a model system of lysozyme-on-mica, this 'proof of concept' study successfully demonstrates the potential of our approach to understand and influence more biomedically applicable protein-substrate couples.
Original languageEnglish
Pages (from-to)9648-9655
Number of pages7
Issue number17
Early online date1 Aug 2008
Publication statusPublished - 2008


  • protein clusters
  • organic crystal growth
  • diffusion aggregation models

Fingerprint Dive into the research topics of 'New insights on growth mechanisms of protein clusters at surfaces: an AFM and simulation study'. Together they form a unique fingerprint.

Cite this