Neutralization of Interleukin-18 inhibits neointimal formation in a rat model of vascular injury

Paul Garside, Pasquale Maffia, Gianluca Grassia, Paola Di Meglio, Rosa Carnuccio, Liberato Berrino, Angela Ianaro, Armando Ialenti

Research output: Contribution to journalArticlepeer-review

35 Citations (Scopus)

Abstract

Background - Studies in humans and animal models suggest that interleukin-18 (IL-18) plays a crucial role in vascular pathologies. IL-18 is a predictor of cardiovascular death in angina and is involved in atherotic plaque destabilization. Higher IL-18 plasma levels also are associated with restenosis after coronary artery angioplasty performed in patients with acute myocardial infarction. We investigated the effective role of IL-18 in neointimal formation in a balloon-induced rat model of vascular injury. Methods and Results - Endothelial denudation of the left carotid artery was performed by use of a balloon embolectomy catheter. Increased expression of IL-18 and IL-18R/ß mRNA was detectable in carotid arteries from days 2 to 14 after angioplasty. The active form of IL-18 was highly expressed in injured arteries. Strong immunoreactivity for IL-18 was detected in the medial smooth muscle cells at days 2 and 7 after balloon injury and in proliferating/migrating smooth muscle cells in neointima at day 14. Moreover, serum concentrations of IL-18 were significantly higher among rats subjected to vascular injury. Treatment with neutralizing rabbit anti-rat IL-18 immunoglobulin G significantly reduced neointimal formation (by 27%; P<0.01), reduced the number of proliferating cells, and inhibited interferon-, IL-6, and IL-8 mRNA expression and nuclear factor-B activation in injured arteries. In addition, in vitro data show that IL-18 affects smooth muscle cell proliferation. Conclusions - These results identify a critical role for IL-18 in neointimal formation in a rat model of vascular injury and suggest a potential role for IL-18 neutralization in the reduction of neointimal development.
Original languageEnglish
Pages (from-to)430-437
Number of pages7
JournalCirculation
Volume114
DOIs
Publication statusPublished - 24 Jul 2006

Keywords

  • angioplasty
  • balloon
  • carotid arteries
  • interleukins
  • vascular injury

Cite this