Nerve growth factor stimulation of p42/p44 mitogen-activated protein kinase in PC12 cells: role of G(i/o), G protein-coupled receptor kinase 2, beta-arrestin I, and endocytic processing

S. Rakhit, S. Pyne, N.J. Pyne

Research output: Contribution to journalArticle

76 Citations (Scopus)

Abstract

In this study, we have shown that nerve growth factor (NGF)-dependent activation of the p42/p44 mitogen-activated protein kinase (p42/p44 MAPK) pathway in PC12 cells can be partially blocked by pertussis toxin (which inactivates the G proteins Gi/o). This suggests that the Trk A receptor may use a G protein-coupled receptor pathway to signal to p42/p44 MAPK. This was supported by data showing that the NGF-dependent activation of p42/p44 MAPK is potentiated in cells transfected with G protein-coupled receptor kinase 2 (GRK2) or beta -arrestin I. Moreover, GRK2 is constitutively bound with the Trk A receptor, whereas NGF stimulates the pertussis toxin-sensitive binding of beta -arrestin I to the TrkA receptor-GRK2 complex. Both GRK2 and beta -arrestin I are involved in clathrin-mediated endocytic signaling to p42/p44 MAPK. Indeed, inhibitors of clathrin-mediated endocytosis (e.g., monodansylcadaverine, concanavalin A, and hyperosmolar sucrose) reduced the NGF-dependent activation of p42/p44 MAPK. Finally, we have found that the G protein-coupled receptor-dependent component regulating p42/p44 MAPK is required for NGF-induced differentiation of PC12 cells. Thus, NGF-dependent inhibition of DNA synthesis was partially blocked by PD098059 (inhibitor of MAPK kinase-1 activation) and pertussis toxin. Our findings are the first to show that the Trk A receptor uses a classic G protein-coupled receptor-signaling pathway to promote differentiation of PC12 cells.
Original languageEnglish
Pages (from-to)63-70
Number of pages7
JournalMolecular Pharmacology
Volume60
Issue number1
Publication statusPublished - 2001

Fingerprint

G-Protein-Coupled Receptor Kinase 2
Mitogen-Activated Protein Kinase 1
PC12 Cells
Nerve Growth Factor
Pertussis Toxin
G-Protein-Coupled Receptors
Clathrin
trkA Receptor
MAP Kinase Kinase 1
Gi-Go GTP-Binding Protein alpha Subunits
Nerve Growth Factor Receptor
Concanavalin A
Endocytosis
Sucrose
beta-Arrestins
Signal Transduction
DNA

Keywords

  • pharmacology
  • biomedical science
  • nerve growth

Cite this

@article{e708db65c03149e78e98a127ebe4ebfb,
title = "Nerve growth factor stimulation of p42/p44 mitogen-activated protein kinase in PC12 cells: role of G(i/o), G protein-coupled receptor kinase 2, beta-arrestin I, and endocytic processing",
abstract = "In this study, we have shown that nerve growth factor (NGF)-dependent activation of the p42/p44 mitogen-activated protein kinase (p42/p44 MAPK) pathway in PC12 cells can be partially blocked by pertussis toxin (which inactivates the G proteins Gi/o). This suggests that the Trk A receptor may use a G protein-coupled receptor pathway to signal to p42/p44 MAPK. This was supported by data showing that the NGF-dependent activation of p42/p44 MAPK is potentiated in cells transfected with G protein-coupled receptor kinase 2 (GRK2) or beta -arrestin I. Moreover, GRK2 is constitutively bound with the Trk A receptor, whereas NGF stimulates the pertussis toxin-sensitive binding of beta -arrestin I to the TrkA receptor-GRK2 complex. Both GRK2 and beta -arrestin I are involved in clathrin-mediated endocytic signaling to p42/p44 MAPK. Indeed, inhibitors of clathrin-mediated endocytosis (e.g., monodansylcadaverine, concanavalin A, and hyperosmolar sucrose) reduced the NGF-dependent activation of p42/p44 MAPK. Finally, we have found that the G protein-coupled receptor-dependent component regulating p42/p44 MAPK is required for NGF-induced differentiation of PC12 cells. Thus, NGF-dependent inhibition of DNA synthesis was partially blocked by PD098059 (inhibitor of MAPK kinase-1 activation) and pertussis toxin. Our findings are the first to show that the Trk A receptor uses a classic G protein-coupled receptor-signaling pathway to promote differentiation of PC12 cells.",
keywords = "pharmacology, biomedical science, nerve growth",
author = "S. Rakhit and S. Pyne and N.J. Pyne",
year = "2001",
language = "English",
volume = "60",
pages = "63--70",
journal = "Molecular Pharmacology",
issn = "0026-895X",
number = "1",

}

TY - JOUR

T1 - Nerve growth factor stimulation of p42/p44 mitogen-activated protein kinase in PC12 cells: role of G(i/o), G protein-coupled receptor kinase 2, beta-arrestin I, and endocytic processing

AU - Rakhit, S.

AU - Pyne, S.

AU - Pyne, N.J.

PY - 2001

Y1 - 2001

N2 - In this study, we have shown that nerve growth factor (NGF)-dependent activation of the p42/p44 mitogen-activated protein kinase (p42/p44 MAPK) pathway in PC12 cells can be partially blocked by pertussis toxin (which inactivates the G proteins Gi/o). This suggests that the Trk A receptor may use a G protein-coupled receptor pathway to signal to p42/p44 MAPK. This was supported by data showing that the NGF-dependent activation of p42/p44 MAPK is potentiated in cells transfected with G protein-coupled receptor kinase 2 (GRK2) or beta -arrestin I. Moreover, GRK2 is constitutively bound with the Trk A receptor, whereas NGF stimulates the pertussis toxin-sensitive binding of beta -arrestin I to the TrkA receptor-GRK2 complex. Both GRK2 and beta -arrestin I are involved in clathrin-mediated endocytic signaling to p42/p44 MAPK. Indeed, inhibitors of clathrin-mediated endocytosis (e.g., monodansylcadaverine, concanavalin A, and hyperosmolar sucrose) reduced the NGF-dependent activation of p42/p44 MAPK. Finally, we have found that the G protein-coupled receptor-dependent component regulating p42/p44 MAPK is required for NGF-induced differentiation of PC12 cells. Thus, NGF-dependent inhibition of DNA synthesis was partially blocked by PD098059 (inhibitor of MAPK kinase-1 activation) and pertussis toxin. Our findings are the first to show that the Trk A receptor uses a classic G protein-coupled receptor-signaling pathway to promote differentiation of PC12 cells.

AB - In this study, we have shown that nerve growth factor (NGF)-dependent activation of the p42/p44 mitogen-activated protein kinase (p42/p44 MAPK) pathway in PC12 cells can be partially blocked by pertussis toxin (which inactivates the G proteins Gi/o). This suggests that the Trk A receptor may use a G protein-coupled receptor pathway to signal to p42/p44 MAPK. This was supported by data showing that the NGF-dependent activation of p42/p44 MAPK is potentiated in cells transfected with G protein-coupled receptor kinase 2 (GRK2) or beta -arrestin I. Moreover, GRK2 is constitutively bound with the Trk A receptor, whereas NGF stimulates the pertussis toxin-sensitive binding of beta -arrestin I to the TrkA receptor-GRK2 complex. Both GRK2 and beta -arrestin I are involved in clathrin-mediated endocytic signaling to p42/p44 MAPK. Indeed, inhibitors of clathrin-mediated endocytosis (e.g., monodansylcadaverine, concanavalin A, and hyperosmolar sucrose) reduced the NGF-dependent activation of p42/p44 MAPK. Finally, we have found that the G protein-coupled receptor-dependent component regulating p42/p44 MAPK is required for NGF-induced differentiation of PC12 cells. Thus, NGF-dependent inhibition of DNA synthesis was partially blocked by PD098059 (inhibitor of MAPK kinase-1 activation) and pertussis toxin. Our findings are the first to show that the Trk A receptor uses a classic G protein-coupled receptor-signaling pathway to promote differentiation of PC12 cells.

KW - pharmacology

KW - biomedical science

KW - nerve growth

UR - http://molpharm.aspetjournals.org/cgi/content/abstract/60/1/63

M3 - Article

VL - 60

SP - 63

EP - 70

JO - Molecular Pharmacology

JF - Molecular Pharmacology

SN - 0026-895X

IS - 1

ER -