Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme

A. Higginson, R. J. Gray, M. King, R. J. Dance, S. D. R. Williamson, N. M. H. Butler, R. Wilson, R. Capdessus, C. Armstrong, J. S. Green, S. J. Hawkes, P. Martin, W. Q. Wei, S. R. Mirfayzi, X. H. Yuan, S. Kar, M. Borghesi, R. J. Clarke, D. Neely, P. McKenna

Research output: Contribution to journalArticle

59 Citations (Scopus)

Abstract

The range of potential applications of compact laser-plasma ion sources motivates the development of new acceleration schemes to increase achievable ion energies and conversion efficiencies. Whilst the evolving nature of laser-plasma interactions can limit the effectiveness of individual acceleration mechanisms, it can also enable the development of hybrid schemes, allowing additional degrees of control on the properties of the resulting ion beam. Here we report on an experimental demonstration of efficient proton acceleration to energies exceeding 94 MeV via a hybrid scheme of radiation pressure-sheath acceleration in an ultrathin foil irradiated by a linearly polarized laser pulse. This occurs via a double-peaked electrostatic field structure, which, at an optimum foil thickness, is significantly enhanced by relativistic transparency and an associated jet of superthermal electrons. The range of parameters over which this hybrid scenario occurs is discussed and implications for ion acceleration driven by next generation, multi-petawatt laser facilities are explored.
LanguageEnglish
Article number724
Number of pages9
JournalNature Communications
Volume9
DOIs
Publication statusPublished - 20 Feb 2018

Fingerprint

Transparency
Protons
Lasers
protons
Ions
lasers
Metal foil
foils
Radiation Hybrid Mapping
Plasma interactions
laser plasma interactions
radiation pressure
Ion sources
Static Electricity
laser plasmas
sheaths
ion sources
Ion beams
Conversion efficiency
Energy efficiency

Keywords

  • laser-plasma
  • ion energies
  • ion beams
  • proton acceleration
  • superthermal electrons

Cite this

Higginson, A. ; Gray, R. J. ; King, M. ; Dance, R. J. ; Williamson, S. D. R. ; Butler, N. M. H. ; Wilson, R. ; Capdessus, R. ; Armstrong, C. ; Green, J. S. ; Hawkes, S. J. ; Martin, P. ; Wei, W. Q. ; Mirfayzi, S. R. ; Yuan, X. H. ; Kar, S. ; Borghesi, M. ; Clarke, R. J. ; Neely, D. ; McKenna, P. / Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme. In: Nature Communications. 2018 ; Vol. 9.
@article{f80c7c096f55464f8208654fe1ac6b84,
title = "Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme",
abstract = "The range of potential applications of compact laser-plasma ion sources motivates the development of new acceleration schemes to increase achievable ion energies and conversion efficiencies. Whilst the evolving nature of laser-plasma interactions can limit the effectiveness of individual acceleration mechanisms, it can also enable the development of hybrid schemes, allowing additional degrees of control on the properties of the resulting ion beam. Here we report on an experimental demonstration of efficient proton acceleration to energies exceeding 94 MeV via a hybrid scheme of radiation pressure-sheath acceleration in an ultrathin foil irradiated by a linearly polarized laser pulse. This occurs via a double-peaked electrostatic field structure, which, at an optimum foil thickness, is significantly enhanced by relativistic transparency and an associated jet of superthermal electrons. The range of parameters over which this hybrid scenario occurs is discussed and implications for ion acceleration driven by next generation, multi-petawatt laser facilities are explored.",
keywords = "laser-plasma, ion energies, ion beams, proton acceleration, superthermal electrons",
author = "A. Higginson and Gray, {R. J.} and M. King and Dance, {R. J.} and Williamson, {S. D. R.} and Butler, {N. M. H.} and R. Wilson and R. Capdessus and C. Armstrong and Green, {J. S.} and Hawkes, {S. J.} and P. Martin and Wei, {W. Q.} and Mirfayzi, {S. R.} and Yuan, {X. H.} and S. Kar and M. Borghesi and Clarke, {R. J.} and D. Neely and P. McKenna",
year = "2018",
month = "2",
day = "20",
doi = "10.1038/s41467-018-03063-9",
language = "English",
volume = "9",
journal = "Nature Communications",
issn = "2041-1723",

}

Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme. / Higginson, A.; Gray, R. J.; King, M.; Dance, R. J.; Williamson, S. D. R.; Butler, N. M. H.; Wilson, R.; Capdessus, R.; Armstrong, C.; Green, J. S.; Hawkes, S. J.; Martin, P.; Wei, W. Q.; Mirfayzi, S. R.; Yuan, X. H.; Kar, S.; Borghesi, M.; Clarke, R. J.; Neely, D.; McKenna, P.

In: Nature Communications, Vol. 9, 724, 20.02.2018.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme

AU - Higginson, A.

AU - Gray, R. J.

AU - King, M.

AU - Dance, R. J.

AU - Williamson, S. D. R.

AU - Butler, N. M. H.

AU - Wilson, R.

AU - Capdessus, R.

AU - Armstrong, C.

AU - Green, J. S.

AU - Hawkes, S. J.

AU - Martin, P.

AU - Wei, W. Q.

AU - Mirfayzi, S. R.

AU - Yuan, X. H.

AU - Kar, S.

AU - Borghesi, M.

AU - Clarke, R. J.

AU - Neely, D.

AU - McKenna, P.

PY - 2018/2/20

Y1 - 2018/2/20

N2 - The range of potential applications of compact laser-plasma ion sources motivates the development of new acceleration schemes to increase achievable ion energies and conversion efficiencies. Whilst the evolving nature of laser-plasma interactions can limit the effectiveness of individual acceleration mechanisms, it can also enable the development of hybrid schemes, allowing additional degrees of control on the properties of the resulting ion beam. Here we report on an experimental demonstration of efficient proton acceleration to energies exceeding 94 MeV via a hybrid scheme of radiation pressure-sheath acceleration in an ultrathin foil irradiated by a linearly polarized laser pulse. This occurs via a double-peaked electrostatic field structure, which, at an optimum foil thickness, is significantly enhanced by relativistic transparency and an associated jet of superthermal electrons. The range of parameters over which this hybrid scenario occurs is discussed and implications for ion acceleration driven by next generation, multi-petawatt laser facilities are explored.

AB - The range of potential applications of compact laser-plasma ion sources motivates the development of new acceleration schemes to increase achievable ion energies and conversion efficiencies. Whilst the evolving nature of laser-plasma interactions can limit the effectiveness of individual acceleration mechanisms, it can also enable the development of hybrid schemes, allowing additional degrees of control on the properties of the resulting ion beam. Here we report on an experimental demonstration of efficient proton acceleration to energies exceeding 94 MeV via a hybrid scheme of radiation pressure-sheath acceleration in an ultrathin foil irradiated by a linearly polarized laser pulse. This occurs via a double-peaked electrostatic field structure, which, at an optimum foil thickness, is significantly enhanced by relativistic transparency and an associated jet of superthermal electrons. The range of parameters over which this hybrid scenario occurs is discussed and implications for ion acceleration driven by next generation, multi-petawatt laser facilities are explored.

KW - laser-plasma

KW - ion energies

KW - ion beams

KW - proton acceleration

KW - superthermal electrons

UR - https://www.nature.com/ncomms/

U2 - 10.1038/s41467-018-03063-9

DO - 10.1038/s41467-018-03063-9

M3 - Article

VL - 9

JO - Nature Communications

T2 - Nature Communications

JF - Nature Communications

SN - 2041-1723

M1 - 724

ER -