Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme

A. Higginson, R. J. Gray, M. King, R. J. Dance, S. D. R. Williamson, N. M. H. Butler, R. Wilson, R. Capdessus, C. Armstrong, J. S. Green, S. J. Hawkes, P. Martin, W. Q. Wei, S. R. Mirfayzi, X. H. Yuan, S. Kar, M. Borghesi, R. J. Clarke, D. Neely, P. McKenna

Research output: Contribution to journalArticle

78 Citations (Scopus)
57 Downloads (Pure)

Abstract

The range of potential applications of compact laser-plasma ion sources motivates the development of new acceleration schemes to increase achievable ion energies and conversion efficiencies. Whilst the evolving nature of laser-plasma interactions can limit the effectiveness of individual acceleration mechanisms, it can also enable the development of hybrid schemes, allowing additional degrees of control on the properties of the resulting ion beam. Here we report on an experimental demonstration of efficient proton acceleration to energies exceeding 94 MeV via a hybrid scheme of radiation pressure-sheath acceleration in an ultrathin foil irradiated by a linearly polarized laser pulse. This occurs via a double-peaked electrostatic field structure, which, at an optimum foil thickness, is significantly enhanced by relativistic transparency and an associated jet of superthermal electrons. The range of parameters over which this hybrid scenario occurs is discussed and implications for ion acceleration driven by next generation, multi-petawatt laser facilities are explored.
Original languageEnglish
Article number724
Number of pages9
JournalNature Communications
Volume9
DOIs
Publication statusPublished - 20 Feb 2018

    Fingerprint

Keywords

  • laser-plasma
  • ion energies
  • ion beams
  • proton acceleration
  • superthermal electrons

Cite this