Nanoindentation of polysiliocn and single crystal silicon: molecular dynamics simulation and experimental validation

Saurav Goel, Nadimul Haque Faisal, Xichun Luo, Jiwang Yan, Anupam Agrawal

Research output: Contribution to journalArticlepeer-review

89 Citations (Scopus)
249 Downloads (Pure)


This paper presents novel advances in the deformation behaviour of polycrystalline and single crystal silicon using molecular dynamics (MD) simulation and validation of the same via nanoindentation experiments. In order to unravel the mechanism of deformation, four simulations were performed: indentation of a polycrystalline silicon substrate with a (i) Berkovich pyramidal and a (ii) spherical (arc) indenter, and (iii and iv) indentation of a single crystal silicon substrate with these two indenters. The simulation results reveal that high pressure phase transformation (HPPT) in silicon (Si-I to Si-II phase transformation) occurred in all cases; however, its extent and the manner in which it occurred differed significantly between polycrystalline silicon and single crystal silicon, and was the main driver of differences in the nanoindentation deformation behaviour between these two types of silicon. Interestingly, in polycrystalline silicon, the HPPT was observed to occur more preferentially along the grain boundaries than across the grain boundaries. An automated dislocation extraction algorithm (DXA) revealed no dislocations in the deformation zone, suggesting that HPPT is the primary mechanism in inducing plasticity in silicon.
Original languageEnglish
Article number275304
Number of pages14
JournalJournal of Physics D: Applied Physics
Issue number27
Early online date13 Jun 2014
Publication statusPublished - 2014


  • polycrystalline silicon
  • single crystal silicon
  • molecular dynamics


Dive into the research topics of 'Nanoindentation of polysiliocn and single crystal silicon: molecular dynamics simulation and experimental validation'. Together they form a unique fingerprint.

Cite this