Muscle fibre conduction velocity during a 30-s Wingate anaerobic test

D. Stewart, D. Farina, C. Shen, A. Macaluso

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)


Ten male volunteers (age 29.2 +/- 5.2 years, mean +/- SD) were recruited to test the hypothesis that muscle fibre conduction velocity (MFCV) would decrease with power output during a 30-s Wingate test on a mechanically-braked cycle ergometer. Prior to the main test, the optimal pre-fixed load corresponding to the highest power output was selected following a random series of six 10-s sprints. Surface electromyographic (EMG) signals were detected from the right vastus lateralis with linear adhesive arrays of eight electrodes. Power output decreased significantly from 6-s until the end of the test (860.9 +/- 207.8 vs. 360.9 +/- 11.4 W, respectively) and was correlated with MFCV (R = 0.543, P < 0.01), which also declined significantly by 26.8 +/- 11% (P < 0.05). There was a tendency for the mean frequency of the EMG power spectrum (MNF) to decrease, but average rectified values (ARV) remained unchanged throughout the test. The parallel decline of MFCV with power output suggests changes in fibre membrane properties. The unaltered ARV, together with the declined MFCV, would indicate either a decrease in discharge rate, de-recruitment of fatigued motor units or elongation of still present motor unit action potentials.
Original languageEnglish
Pages (from-to)418-422
Number of pages5
JournalJournal of Electro - myography and Kinesiology
Issue number3
Publication statusPublished - Jun 2011


  • surface emg
  • power output
  • dynamic contractions
  • cycling
  • muscle fatigue
  • exercise
  • force
  • surface EMG
  • muscle fibre
  • conduction velocity
  • 30-s wingate
  • anaerobic test


Dive into the research topics of 'Muscle fibre conduction velocity during a 30-s Wingate anaerobic test'. Together they form a unique fingerprint.

Cite this