Multiplexed detection of six labelled oligonucleotides using surface enhanced resonance Raman scattering (SERRS)

K. Faulds, R. Jarvis, W.E. Smith, D. Graham, R. Goodacre

Research output: Contribution to journalArticlepeer-review

114 Citations (Scopus)


The labelling of target biomolecules followed by detection using some form of optical spectroscopy has become common practice to aid in their detection. This approach has allowed the field of bioanalysis to dramatically expand; however, most methods suffer from the lack of the ability to discriminate between the components of a complex mixture. Currently, fluorescence spectroscopy is the method of choice but its ability to multiplex is greatly hampered by the broad overlapping spectra which are obtained. Surface enhanced resonance Raman scattering (SERRS) holds many advantages over fluorescence both in sensitivity and, more importantly here, in its ability to identify components in a mixture without separation due to the sharp fingerprint spectra obtained. Here the first multiplexed simultaneous detection of six different DNA sequences, corresponding to different strains of the Escherichia coli bacterium, each labelled with a different commercially available dye label (ROX, HEX, FAM, TET, Cy3, or TAMRA) is reported. This was achieved with the aid of multivariate analysis, also known as chemometrics, which can involve the application of a wide range of statistical and data analysis methods. In this study, both exploratory discriminant analysis and supervised learning, by partial least squares (PLS) regression, were used and the ability to discriminate whether a particular labelled oligonucleotide was present or absent in a mixture was achieved using PLS with very high sensitivity (0.98-1), specificity (0.98-1), accuracy (range 0.99-1), and precision (0.98-1). (Abstract copied from Swetswise web site:
Original languageEnglish
Pages (from-to)1505-1512
Number of pages8
Issue number11
Early online date28 Aug 2008
Publication statusPublished - 1 Nov 2008


  • multiplexed detection
  • labelled oligonucleotides
  • surfaceenhanced resonance
  • Raman scattering (SERRS)†


Dive into the research topics of 'Multiplexed detection of six labelled oligonucleotides using surface enhanced resonance Raman scattering (SERRS)'. Together they form a unique fingerprint.

Cite this